scholarly journals Myeloma Bone Disease: Update on Pathogenesis and Novel Treatment Strategies

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 202 ◽  
Author(s):  
Sonia Vallet ◽  
Julia-Marie Filzmoser ◽  
Martin Pecherstorfer ◽  
Klaus Podar

Bone disease, including osteolytic lesions and/or osteoporosis, is a common feature of multiple myeloma (MM). The consequences of skeletal involvement are severe pain, spinal cord compressions, and bone fractures, which have a dramatic impact on patients’ quality of life and, ultimately, survival. During the past few years, several landmark studies significantly enhanced our insight into MM bone disease (MBD) by identifying molecular mechanisms leading to increased bone resorption due to osteoclast activation, and decreased bone formation by osteoblast inhibition. Bisphosphonates were the mainstay to prevent skeletal-related events in MM for almost two decades. Excitingly, the most recent approval of the receptor activator of NF-kappa B ligand (RANKL) inhibitor, denosumab, expanded treatment options for MBD, for patients with compromised renal function, in particular. In addition, several other bone-targeting agents, including bone anabolic drugs, are currently in preclinical and early clinical assessment. This review summarizes our up-to-date knowledge on the pathogenesis of MBD and discusses novel state-of-the-art treatment strategies that are likely to enter clinical practice in the near future.

2021 ◽  
Vol 22 (7) ◽  
pp. 3389
Author(s):  
Jeng-Shiun Du ◽  
Chia-Hung Yen ◽  
Chin-Mu Hsu ◽  
Hui-Hua Hsiao

Multiple myeloma (MM) is a B-cell neoplasm characterized by clonal plasma–cell proliferation. The survival and prognosis of this condition have been significantly improved by treatment with active anti-MM drugs such as bortezomib or lenalidomide. Further, the discovery of novel agents has recently paved the way for new areas of investigation. However, MM, including myeloma-related bone diseases, remains fatal. Bone disease or bone destruction in MM is a consequence of skeletal involvement with bone pain, spinal cord compression, and bone fracture resulting from osteolytic lesions. These consequences affect disease outcomes, including patients’ quality of life and survival. Several studies have sought to better understand MM bone disease (MBD) through the classification of its molecular mechanisms, including osteoclast activation and osteoblast inhibition. Bisphosphonates and the receptor activator of the nuclear factor-kappa B (NF-κB) ligand (RANKL) inhibitor, denosumab, prevent skeletal-related events in MM. In addition, several other bone-targeting agents, including bone-anabolic drugs, are currently used in preclinical and early clinical evaluations. This review summarizes the current knowledge of the pathogenesis of MBD and discusses novel agents that appear very promising and will soon enter clinical development.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1548
Author(s):  
Mustafa N. Mithaiwala ◽  
Danielle Santana-Coelho ◽  
Grace A. Porter ◽  
Jason C. O’Connor

Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that ‘fuel the fire’ in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different CNS disorders, neuroinflammation and the KP. We provide a thorough overview of the different branches of the KP pertinent to CNS disease pathology that have therapeutic implications for the development of selected and efficacious treatment strategies.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Victoria Damerell ◽  
Michael S. Pepper ◽  
Sharon Prince

AbstractSarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi42-vi43
Author(s):  
Jasmin Sponagel ◽  
Shanshan Zhang ◽  
Prakash Chinnaiyan ◽  
Joshua Rubin ◽  
Joseph Ippolito

Abstract Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. GBM occurs more commonly in males, but female patients survive significantly longer. Understanding the molecular mechanisms that underlie those sex differences could support novel treatment strategies. In this regard, we found that male and female GBM patient samples differ in their metabolite abundance and that male patients exhibit a significantly higher abundance of TCA cycle metabolites. We confirmed those findings in a murine model of GBM, which has previously yielded important insights into sexual dimorphism in GBM. Strikingly, sex differences in TCA cycle flux were entirely driven by glutamine flux, not glucose flux, suggesting a sex-specific role for glutamine in GBM. Metabolic manipulation through glutamine deprivation resulted in a greater growth inhibition in male GBM cells. Glutamine itself can be utilized for anabolic reactions or it can be converted to glutamate by glutaminase. Only male GBM cells were sensitive to pharmacological glutaminase inhibition with BPTES or CB-839, suggesting that male GBM cells are glutamate dependent while female GBM cells are not. Concordantly, we found significantly higher glutaminase levels in male GBM cells. Furthermore, we found that numerous metabolites (including NADH, ATP, and glutathione) involved in cellular processes downstream of glutamate were more abundant in male GBM cells. In contrast, female GBM cells were resistant to low glutamine conditions and glutaminase inhibitors unless glutamine-synthase activity was disrupted, suggesting that glutamine synthesis might play a more prominent role in female GBM. Together, these data indicate that male and female GBM differ in their metabolic adaptions. Male GBM utilize glutamate to fuel the TCA cycle and mitochondrial activity while female GBM synthesize and utilize glutamine itself. This sexual dimorphism in metabolic reprogramming reveals novel sex specific metabolic targets for GBM and underlines the importance of considering sex in metabolic targeting approaches.


2019 ◽  
Vol 20 (15) ◽  
pp. 3757 ◽  
Author(s):  
Beatrice Bachmeier ◽  
Dieter Melchart

The efficacy of the plant-derived polyphenol curcumin, in various aspects of health and wellbeing, is matter of public interest. An internet search of the term “Curcumin” displays about 12 million hits. Among the multitudinous information presented on partly doubtful websites, there are reports attracting the reader with promises ranging from eternal youth to cures for incurable diseases. Unfortunately, many of these reports are not based on scientific evidence, but they feed the desideratum of the reader for a “miracle cure”. This circumstance makes it very difficult for researchers, who work in a scientifically sound and evidence-based manner on the therapeutic benefits (or side effects) of curcumin, to demarcate their results from sensational reports that circulate in the web and in other media. This is only one of many obstacles making it difficult to pave curcumin’s way into clinical application; others are its nonpatentability and low economic usability. A further impediment comes from scientists who never worked with curcumin or any other natural plant-derived compound in their own labs. They have never tested these compounds in any scientific assay, neither in vitro nor in vivo; however, they claim, in a sometimes polemic manner, that everything that has so far been published on curcumin’s molecular effects is based on artefacts. The here presented Special Issue comprises a collection of five scientifically sound articles and nine reviews reporting on the therapeutic benefits and the molecular mechanisms of curcumin or of chemically modified curcumin in various diseases ranging from malignant tumors to chronic diseases, microbial infection, and even neurodegenerative diseases. The excellent results of the scientific projects that underlie the five original papers give reason to hope that curcumin will be part of novel treatment strategies in the near future—either as monotherapy or in combination with other drugs or therapeutic applications.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 1102-1102 ◽  
Author(s):  
W. S. Ooi ◽  
S. Popovic ◽  
M. Kalina ◽  
K. Harriette ◽  
G. Singh ◽  
...  

1102 Background: The benefits of bisphosphonates (BPs) in reducing or delaying skeletal related events (SREs) in patients with BM have been attributed to their potent osteoclast (OC) inhibiting effect. However, despite the use of modern systemic anti-cancer therapy including potent BPs, many patients with BM continue to suffer from the consequences of their bone disease. An improved understanding of the basic mechanisms of bone destruction would allow further appropriate targeted treatment strategies to be developed. Methods: Archival paraffin embedded BM specimens from patients with MBC were examined for expression of OCs, receptor activator of nuclear factor kappa B (RANK), RANK Ligand (RANKL) and Osteoprotegerin (OPG). Histological specimens were also available for primary breast cancer, lymph node (LN) metastasis, normal breast and bone tissues for comparison. Results: BM specimens were available for 20 BP naïve pts and 2 pts treated with BP. OCs were significantly increased in the BM of the BP naive group compared to controls. There were no OCs seen in the BP treated group. RANK was expressed on tumor cells (TCs) in the both bone and nodal metastases but not on the primary cancer cells. It is also expressed on the OCs which were present in both BM and normal bone. While RANKL was absent in TCs, it was strongly expressed in all stromal cells (SCs) in all specimens and in osteoblasts. The OPG, while present in TCs of the BM and LN metastases, is not detected in the primary cancer. Conclusion: The mechanism of bone destruction in MBC are not fully understood and are clearly multifactorial. OCs may not be the singular obligatory factor for osteolysis in BM. Further investigation of various inhibitors of the RANK/RANKL/OPG pathways, may allow novel treatment strategies to be developed. No significant financial relationships to disclose.


Author(s):  
Jordan M. Wall ◽  
Ankita Basu ◽  
Elizabeth R.M. Zunica ◽  
Olga S. Dubuisson ◽  
Kathryn Pergola ◽  
...  

Valosin containing protein (VCP) is a hexameric type II AAA ATPase required for several cellular processes including ER-associated degradation, organelle biogenesis, autophagy and membrane fusion. VCP contains three domains: a regulatory N-terminal domain and two ATPase domains (D1 and D2). Mutations in the N-terminal and D1 domains are associated with several degenerative diseases, including Multisystem Proteinopathy (MSP-1) and ALS. However, patients with VCP mutations vary widely in their pathology and clinical penetrance, making it difficult to devise effective treatment strategies. Having a deeper understanding of how each mutation affects VCP function could enhance the prediction of clinical outcomes and design of personalized treatment options. Over-expressing VCP patient mutations in Drosophila has been shown to mimic many pathologies observed in human patients. The power of a genetically tractable model organism coupled with well-established in vivo assays and a relatively short life cycle make Drosophila an attractive system to study VCP disease pathogenesis and novel treatment strategies. Using CRISPR/Cas9, we have generated individual Drosophila knock-in mutants that include nine hereditary VCP disease mutations. We validate that these models display many hallmarks of VCP-mediated degeneration, including progressive decline in mobility, protein aggregate accumulation and defects in lysosomal and mitochondrial function. We also made some novel and unexpected findings, including laminopathies and sex-specific phenotypic differences in several mutants. Taken together, the Drosophila VCP disease models we have generated in this study will be useful for studying the etiology of individual VCP patient mutations and for testing potential genetic and/or pharmacological therapies.


2021 ◽  
Vol 8 ◽  
Author(s):  
Janne W. Bolt ◽  
Chaja M. J. van Ansenwoude ◽  
Ihsan Hammoura ◽  
Marleen G. van de Sande ◽  
Lisa G. M. van Baarsen

Patients with psoriatic arthritis (PsA) are suffering from a decreased quality of life despite currently available treatments. In the latest years, novel therapies targeting the IL-17/IL-23 and TNF pathways improved clinical outcome. Despite this, remission of disease is not achieved in a considerable group of patients, continuous treatment is very often required to reach clinical remission, and prevention of PsA in patients with psoriasis (PsO) is currently impossible. A better understanding of PsA pathogenesis is required to develop novel treatment strategies that target inflammation and destruction more effectively and at an early stage of the disease, or even before clinically manifest disease. The skin is considered as one of the sites of onset of immune activation, triggering the inflammatory cascade in PsA. PsO develops into PsA in 30% of the PsO patients. Influenced by environmental and genetic factors, the inflammatory process in the skin, entheses, and/or gut may evolve into synovial tissue inflammation, characterized by influx of immune cells. The exact role of the innate and adaptive immune cells in disease pathogenesis is not completely known. The involvement of activated IL-17A+ T cells could implicate early immunomodulatory events generated in lymphoid organs thereby shaping the pathogenic inflammatory response leading to disease. In this perspective article, we provide the reader with an overview of the current literature regarding the immunological changes observed during the earliest stages of PsA. Moreover, we will postulate future areas of translational research aimed at increasing our knowledge on the molecular mechanisms driving disease development, which will aid the identification of novel potential therapeutic targets to limit the progression of PsA.


2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii11-ii12
Author(s):  
Skarphedinn Halldorsson ◽  
Siri Fløgstad Svensson ◽  
Henriette Engen Berg ◽  
Denise Wolrab ◽  
Frode Rise ◽  
...  

Abstract Tumor heterogeneity is one of the hallmarks of glioblastoma multiforme (GBM). Morphology within a given GBM tumor can be extremely variable where some regions of the tumor have a soft, gel-like structure while other areas are dense and fibrous. Abnormal mechanical stress and tissue stiffening caused by cancer proliferation are believed to affect vascularity by compressing structurally weak blood vessels and restricting the supply of nutrients and oxygen to the tissue. These effects contribute to a hypoxic microenvironment that promotes disease progression and chemoresistance. The genetic and molecular mechanisms that govern tissue stiffness within GBM tumors, however, are largely unknown. Magnetic Resonance Elastography (MRE) is an emerging technique for quantifying tissue stiffness non-invasively. We have evaluated 10 GBM patients by MRE imaging obtained prior to surgical resection. During surgery, 2–7 stereotactically navigated biopsies were collected from locations within the tumor with varying degrees of measured stiffness. Biopsies were processed to extract RNA, proteins, polar metabolites and lipids. Biomolecules were analyzed on relevant -omics platforms (RNA sequencing, MS-proteomics and lipidomics, NMR of polar metabolites). Differential expression and gene set enrichment analysis of patient paired biopsies indicate an overall increase in macrophage infiltration and extracellular matrix re-organization associated with increased tumor stiffness. Among the most highly upregulated genes in stiff tumor tissue were lymphatic endothelial hyaluronic acid receptor 1 (LYVE-1) and macrophage receptor with collagenous structure (MARCO), both of which have been associated with immune cell infiltration and tissue stiffness. Our preliminary findings offer novel insights into tumor morphology in GBM that can be inferred from imaging prior to surgery. This can be used to identify tumor regions with high risk of progression and infiltration, thereby informing and guiding surgical strategy and may ultimately lead to novel treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document