scholarly journals Pathogenesis of Keratinocyte Carcinomas and the Therapeutic Potential of Medicinal Plants and Phytochemicals

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1979
Author(s):  
Andrea Jess Josiah ◽  
Danielle Twilley ◽  
Sreejarani Kesavan Pillai ◽  
Suprakas Sinha Ray ◽  
Namrita Lall

Keratinocyte carcinoma (KC) is a form of skin cancer that develops in keratinocytes, which are the predominant cells present in the epidermis layer of the skin. Keratinocyte carcinoma comprises two sub-types, namely basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). This review provides a holistic literature assessment of the origin, diagnosis methods, contributing factors, and current topical treatments of KC. Additionally, it explores the increase in KC cases that occurred globally over the past ten years. One of the principal concepts highlighted in this article is the adverse effects linked to conventional treatment methods of KC and how novel treatment strategies that combine phytochemistry and transdermal drug delivery systems offer an alternative approach for treatment. However, more in vitro and in vivo studies are required to fully assess the efficacy, mechanism of action, and safety profile of these phytochemical based transdermal chemotherapeutics.

Author(s):  
Heba A.S. El-Nashar ◽  
Shaza H. Aly ◽  
Amirhossein Ahmadi ◽  
Mohamed El-Shazly

Background: Breast cancer is the most frequently diagnosed type of cancer in women (2.1 million) and stands as the fifth leading cause of death. Several treatment strategies are available such as surgical resection, radiation, hormonal therapy, and conventional chemotherapy that are associated with severe adverse effects on the patients. Objective: This review aims to summarize the different studies (in vitro, in vivo, and new patents) concerning the therapeutic potential of plant polyphenolics in the management of breast cancer published in the period from January 2016 to January 2021. Moreover, this review will focus on the underlying mechanism of action and molecular characteristics of these compounds. Methods: The data of this review were collected from different scientific databases such as PubMed, Science Direct, Google Scholarship, sci-finder, and Egyptian Knowledge bank (EKB). Results: During the last period (2016-2021), the in vitro studies investigated about 52 natural compounds of polyphenolic nature with promising anti-breast cancer, while fourteen compounds were reported via in vivo studies. Besides, there were about fifteen compounds registered as patent drugs. Different mechanisms of action and molecular targets were reported to provide a great clarified base and precise reflection for the anticancer properties of these compounds against breast cancer. Conclusion: Polyphenolics represent a plentiful sources of anticancer lead compounds that stand against the progression of breast cancer invasion and metastasis.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2911 ◽  
Author(s):  
Ashok Aspatwar ◽  
Jean-Yves Winum ◽  
Fabrizio Carta ◽  
Claudiu Supuran ◽  
Milka Hammaren ◽  
...  

Mycobacteria cause a variety of diseases, such as tuberculosis, leprosy, and opportunistic diseases in immunocompromised people. The treatment of these diseases is problematic, necessitating the development of novel treatment strategies. Recently, β-carbonic anhydrases (β-CAs) have emerged as potential drug targets in mycobacteria. The genomes of mycobacteria encode for three β-CAs that have been cloned and characterized from Mycobacterium tuberculosis (Mtb) and the crystal structures of two of the enzymes have been determined. Different classes of inhibitor molecules against Mtb β-CAs have subsequently been designed and have been shown to inhibit these mycobacterial enzymes in vitro. The inhibition of these centrally important mycobacterial enzymes leads to reduced growth of mycobacteria, lower virulence, and impaired biofilm formation. Thus, the inhibition of β-CAs could be a novel approach for developing drugs against the severe diseases caused by pathogenic mycobacteria. In the present article, we review the data related to in vitro and in vivo inhibition studies in the field.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2344
Author(s):  
Elisabeth A. George ◽  
Navya Baranwal ◽  
Jae H. Kang ◽  
Abrar A. Qureshi ◽  
Aaron M. Drucker ◽  
...  

(1) The incidence of skin cancer is increasing in the United States (US) despite scientific advances in our understanding of skin cancer risk factors and treatments. In vitro and in vivo studies have provided evidence that suggests that certain photosensitizing medications (PSMs) increase skin cancer risk. This review summarizes current epidemiological evidence on the association between common PSMs and skin cancer. (2) A comprehensive literature search was conducted to identify meta-analyses, observational studies and clinical trials that report on skin cancer events in PSM users. The associated risks of keratinocyte carcinoma (squamous cell carcinoma and basal cell carcinoma) and melanoma are summarized, for each PSM. (3) There are extensive reports on antihypertensives and statins relative to other PSMs, with positive and null findings, respectively. Fewer studies have explored amiodarone, metformin, antimicrobials and vemurafenib. No studies report on the individual skin cancer risks in glyburide, naproxen, piroxicam, chlorpromazine, thioridazine and nalidixic acid users. (4) The research gaps in understanding the relationship between PSMs and skin cancer outlined in this review should be prioritized because the US population is aging. Thus the number of patients prescribed PSMs is likely to continue to rise.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Victoria Damerell ◽  
Michael S. Pepper ◽  
Sharon Prince

AbstractSarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3088
Author(s):  
Mariana Matias ◽  
Jacinta O. Pinho ◽  
Maria João Penetra ◽  
Gonçalo Campos ◽  
Catarina Pinto Reis ◽  
...  

Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Guzide Bender ◽  
Rezan Fahrioglu Yamaci ◽  
Bahar Taneri

AbstractCRISPR (clustered regularly interspaced short palindromic repeats) systems are one of the most fascinating tools of the current era in molecular biotechnology. With the ease that they provide in genome editing, CRISPR systems generate broad opportunities for targeting mutations. Specifically in recent years, disease-causing mutations targeted by the CRISPR systems have been of main research interest; particularly for those diseases where there is no current cure, including cancer. KRAS mutations remain untargetable in cancer. Mutations in this oncogene are main drivers in common cancers, including lung, colorectal and pancreatic cancers, which are severe causes of public health burden and mortality worldwide, with no cure at hand. CRISPR systems provide an opportunity for targeting cancer causing mutations. In this review, we highlight the work published on CRISPR applications targeting KRAS mutations directly, as well as CRISPR applications targeting mutations in KRAS-related molecules. In specific, we focus on lung, colorectal and pancreatic cancers. To date, the limited literature on CRISPR applications targeting KRAS, reflect promising results. Namely, direct targeting of mutant KRAS variants using various CRISPR systems resulted in significant decrease in cell viability and proliferation in vitro, as well as tumor growth inhibition in vivo. In addition, the effect of mutant KRAS knockdown, via CRISPR, has been observed to exert regulatory effects on the downstream molecules including PI3K, ERK, Akt, Stat3, and c-myc. Molecules in the KRAS pathway have been subjected to CRISPR applications more often than KRAS itself. The aim of using CRISPR systems in these studies was mainly to analyze the therapeutic potential of possible downstream and upstream effectors of KRAS, as well as to discover further potential molecules. Although there have been molecules identified to have such potential in treatment of KRAS-driven cancers, a substantial amount of effort is still needed to establish treatment strategies based on these discoveries. We conclude that, at this point in time, despite being such a powerful directed genome editing tool, CRISPR remains to be underutilized for targeting KRAS mutations in cancer. Efforts channelled in this direction, might pave the way in solving the long-standing challenge of targeting the KRAS mutations in cancers.


2021 ◽  
Vol 14 (12) ◽  
pp. 1248
Author(s):  
Muhammad Waleed Baig ◽  
Humaira Fatima ◽  
Nosheen Akhtar ◽  
Hidayat Hussain ◽  
Mohammad K. Okla ◽  
...  

Exploration of leads with therapeutic potential in inflammatory disorders is worth pursuing. In line with this, the isolated natural compound daturaolone from Datura innoxia Mill. was evaluated for its anti-inflammatory potential using in silico, in vitro and in vivo models. Daturaolone follows Lipinski’s drug-likeliness rule with a score of 0.33. Absorption, distribution, metabolism, excretion and toxicity prediction show strong plasma protein binding; gastrointestinal absorption (Caco-2 cells permeability = 34.6 nm/s); no blood–brain barrier penetration; CYP1A2, CYP2C19 and CYP3A4 metabolism; a major metabolic reaction, being aliphatic hydroxylation; no hERG inhibition; and non-carcinogenicity. Predicted molecular targets were mainly inflammatory mediators. Molecular docking depicted H-bonding interaction with nuclear factor kappa beta subunit (NF-κB), cyclooxygenase-2, 5-lipoxygenase, phospholipase A2, serotonin transporter, dopamine receptor D1 and 5-hydroxy tryptamine. Its cytotoxicity (IC50) value in normal lymphocytes was >20 µg/mL as compared to cancer cells (Huh7.5; 17.32 ± 1.43 µg/mL). Daturaolone significantly inhibited NF-κB and nitric oxide production with IC50 values of 1.2 ± 0.8 and 4.51 ± 0.92 µg/mL, respectively. It significantly reduced inflammatory paw edema (81.73 ± 3.16%), heat-induced pain (89.47 ± 9.01% antinociception) and stress-induced depression (68 ± 9.22 s immobility time in tail suspension test). This work suggests a possible anti-inflammatory role of daturaolone; however, detailed mechanistic studies are still necessary to corroborate and extrapolate the findings.


2020 ◽  
Author(s):  
Kui Wu ◽  
Nathan Yee ◽  
Sangeetha Srinivasan ◽  
Amir Mahmoodi ◽  
Michael Zakharian ◽  
...  

<div> <div> <div> <p>A desired goal of targeted cancer treatments is to achieve high tumor specificity with minimal side effects. Despite recent advances, this remains difficult to achieve in practice as most approaches rely on biomarkers or physiological differences between malignant and healthy tissue, and thus benefit only a subset of patients in need of treatment. To address this unmet need, we introduced a Click Activated Protodrugs Against Cancer (CAPAC) platform that enables targeted activation of drugs at a specific site in the body, i.e., a tumor. In contrast to antibodies (mAbs, ADCs) and other targeted approaches, the mechanism of action is based on in vivo click chemistry, and is thus independent of tumor biomarker expression or factors such as enzymatic activity, pH, or oxygen levels. The platform consists of a tetrazine-modified sodium hyaluronate-based biopolymer injected at a tumor site, followed by one or more doses of a trans-cyclooctene (TCO)- modified cytotoxic protodrug with attenuated activity administered systemically. The protodrug is captured locally by the biopolymer through an inverse electron-demand Diels-Alder reaction between tetrazine and TCO, followed by conversion to the active drug directly at the tumor site, thereby overcoming the systemic limitations of conventional chemotherapy or the need for specific biomarkers of traditional targeted therapy. Here, TCO-modified protodrugs of four prominent cytotoxics (doxorubicin, paclitaxel, etoposide and gemcitabine) are used, highlighting the modularity of the CAPAC platform. In vitro evaluation of cytotoxicity, solubility, stability and activation rendered the protodrug of doxorubicin, SQP33, as the most promising candidate for in vivo studies. Studies in rodents show that a single injection of the tetrazine-modified biopolymer, SQL70, efficiently captures SQP33 protodrug doses given at 10.8-times the maximum tolerated dose of conventional doxorubicin with greatly reduced systemic toxicity. </p> </div> </div> </div>


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1973 ◽  
Author(s):  
Bhagavathi Sivamaruthi ◽  
Periyanaina Kesika ◽  
Mani Prasanth ◽  
Chaiyavat Chaiyasut

In general, fermented foods (FFs) are considered as functional foods. Since the awareness about the health benefits of FFs has increased, the consumption of FF also improved significantly in recent decades. Diabetes is one of the leading threats of the health span of an individual. The present manuscript details the general methods of the production of FFs, and the results of various studies (in vitro, in vivo, and clinical studies) on the antidiabetic properties of FFs. The fermentation method and the active microbes involved in the process play a crucial role in the functional properties of FFs. Several in vitro and in vivo studies have been reported on the health-promoting properties of FFs, such as anti-inflammation, anticancer, antioxidant properties, improved cognitive function and gastrointestinal health, and the reduced presence of metabolic disorders. The studies on the functional properties of FFs by randomized controlled clinical trials using human volunteers are very limited for several reasons, including ethical reasons, safety concerns, approval from the government, etc. Several scientific teams are working on the development of complementary and alternative medicines to improve the treatment strategies for hyperglycemia.


Sign in / Sign up

Export Citation Format

Share Document