scholarly journals Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress

2008 ◽  
Vol 121 (7) ◽  
pp. 1046-1053 ◽  
Author(s):  
S. Ahmed ◽  
J. F. Passos ◽  
M. J. Birket ◽  
T. Beckmann ◽  
S. Brings ◽  
...  
Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 721
Author(s):  
Chiu-Bin Hsiao ◽  
Harneet Bedi ◽  
Raquel Gomez ◽  
Ayesha Khan ◽  
Taylor Meciszewski ◽  
...  

The widespread use of combination antiretroviral therapy (cART) has led to the accelerated aging of the HIV-infected population, and these patients continue to have a range of mild to moderate HIV-associated neurocognitive disorders (HAND). Infection results in altered mitochondrial function. The HIV-1 viral protein Tat significantly alters mtDNA content and enhances oxidative stress in immune cells. Microglia are the immune cells of the central nervous system (CNS) that exhibit a significant mitotic potential and are thus susceptible to telomere shortening. HIV disrupts the normal interplay between microglia and neurons, thereby inducing neurodegeneration. HIV cART contributes to the inhibition of telomerase activity and premature telomere shortening in activated peripheral blood mononuclear cells (PBMC). However, limited information is available on the effect of cART on telomere length (TL) in microglia. Although it is well established that telomere shortening induces cell senescence and contributes to the development of age-related neuro-pathologies, the effect of HIV-Tat on telomere length in human microglial cells and its potential contribution to HAND are not well understood. It is speculated that in HAND intrinsic molecular mechanisms that control energy production underlie microglia-mediated neuronal injury. TL, telomerase and mtDNA expression were quantified in microglial cells using real time PCR. Cellular energetics were measured using the Seahorse assay. The changes in mitochondrial function were examined by Raman Spectroscopy. We have also examined TL in the PBMC obtained from HIV-1 infected rapid progressors (RP) on cART and those who were cART naïve, and observed a significant decrease in telomere length in RP on cART as compared to RP’s who were cART naïve. We observed a significant decrease in telomerase activity, telomere length and mitochondrial function, and an increase in oxidative stress in human microglial cells treated with HIV Tat. Neurocognitive impairment in HIV disease may in part be due to accelerated neuro-pathogenesis in microglial cells, which is attributable to increased oxidative stress and mitochondrial dysfunction.


Author(s):  
Sicong Yu ◽  
Lepeng Gao ◽  
Yang Song ◽  
Xin Ma ◽  
Shuang Liang ◽  
...  

Abstract Mitochondria play an important role in controlling oocyte developmental competence. Our previous studies showed that glycine can regulate mitochondrial function and improve oocyte maturation in vitro. However, the mechanisms by which glycine affects mitochondrial function during oocyte maturation in vitro have not been fully investigated. In this study, we induced a mitochondrial damage model in oocytes with the Bcl-2-specific antagonist ABT-199. We investigated whether glycine could reverse the mitochondrial dysfunction induced by ABT-199 exposure and whether it is related to calcium regulation. Our results showed that ABT-199 inhibited cumulus expansion, decreased the oocyte maturation rate and the intracellular glutathione (GSH) level, caused mitochondrial dysfunction, induced oxidative stress, which was confirmed by decreased mitochondrial membrane potential (Δ⍦m) and the expression of mitochondrial function-related genes (PGC-1α), and increased reactive oxygen species (ROS) levels and the expression of apoptosis-associated genes (Bax, caspase-3, CytC). More importantly, ABT-199-treated oocytes showed an increase in the intracellular free calcium concentration ([Ca 2+]i) and had impaired cortical type 1 inositol 1,4,5-trisphosphate receptors (IP3R1) distribution. Nevertheless, treatment with glycine significantly ameliorated mitochondrial dysfunction, oxidative stress and apoptosis, glycine also regulated [Ca 2+]i levels and IP3R1 cellular distribution, which further protects oocyte maturation in ABT-199-induced porcine oocytes. Taken together, our results indicate that glycine has a protective action against ABT-199-induced mitochondrial dysfunction in porcine oocytes.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1423
Author(s):  
Pedro A. Pousa ◽  
Raquel M. Souza ◽  
Paulo Henrique M. Melo ◽  
Bernardo H. M. Correa ◽  
Tamires S. C. Mendonça ◽  
...  

Telomeres are aging biomarkers, as they shorten while cells undergo mitosis. The aim of this study was to evaluate whether psychiatric disorders marked by psychological distress lead to alterations to telomere length (TL), corroborating the hypothesis that mental disorders might have a deeper impact on our physiology and aging than it was previously thought. A systematic search of the literature using MeSH descriptors of psychological distress (“Traumatic Stress Disorder” or “Anxiety Disorder” or “depression”) and telomere length (“cellular senescence”, “oxidative stress” and “telomere”) was conducted on PubMed, Cochrane Library and ScienceDirect databases. A total of 56 studies (113,699 patients) measured the TL from individuals diagnosed with anxiety, depression and posttraumatic disorders and compared them with those from healthy subjects. Overall, TL negatively associates with distress-related mental disorders. The possible underlying molecular mechanisms that underly psychiatric diseases to telomere shortening include oxidative stress, inflammation and mitochondrial dysfunction linking. It is still unclear whether psychological distress is either a cause or a consequence of telomere shortening.


2008 ◽  
Vol 283 (11) ◽  
pp. 6915-6924 ◽  
Author(s):  
Sarah L. Cuddihy ◽  
Sameh S. Ali ◽  
Erik S. Musiek ◽  
Jacinta Lucero ◽  
Sarah J. Kopp ◽  
...  

1998 ◽  
Vol 95 (16) ◽  
pp. 9562-9566 ◽  
Author(s):  
Tory M. Hagen ◽  
Russell T. Ingersoll ◽  
Carol M. Wehr ◽  
Jens Lykkesfeldt ◽  
Vladimir Vinarsky ◽  
...  

Mitochondrial function and ambulatory activity were monitored after feeding old rats acetyl-l-carnitine (ALCAR). Young (3–5 mo) and old (22–28 mo) rats were given a 1.5% (wt/vol) solution of ALCAR in their drinking water for 1 mo, were sacrificed, and their liver parenchymal cells were isolated. ALCAR supplementation significantly reverses the age-associated decline of mitochondrial membrane potential, as assessed by rhodamine 123 staining. Cardiolipin, which declines significantly with age, is also restored. ALCAR increases cellular oxygen consumption, which declines with age, to the level of young rats. However, the oxidant production per oxygen consumed, as measured by 2′,7′-dichlorofluorescin fluorescence levels, is ≈30% higher than in untreated old rats. Cellular glutathione and ascorbate levels were nearly 30% and 50% lower, respectively, in cells from ALCAR-supplemented old rats than in untreated old rats, further indicating that ALCAR supplementation might increase oxidative stress. Ambulatory activity in young and old rats was quantified as a general measure of metabolic activity. Ambulatory activity, defined as mean total distance traveled, in old rats is almost 3-fold lower than in young animals. ALCAR supplementation increases ambulatory activity significantly in both young and old rats, with the increase being larger in old rats. Thus, ALCAR supplementation to old rats markedly reverses the age-associated decline in many indices of mitochondrial function and general metabolic activity, but may increase oxidative stress.


2018 ◽  
Vol 9 (11) ◽  
Author(s):  
Jin-Xiu Pan ◽  
Fulei Tang ◽  
Fei Xiong ◽  
Lei Xiong ◽  
Peng Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document