Force contribution of the LFA-1/ICAM-1 complex to T cell adhesion

1992 ◽  
Vol 103 (1) ◽  
pp. 259-266
Author(s):  
K.L. Sung ◽  
P. Kuhlman ◽  
F. Maldonado ◽  
B.A. Lollo ◽  
S. Chien ◽  
...  

Little is known in quantitative terms about forces between cells generated during adhesion and recognition, or about the contribution of any one set of molecular associations to the development of these forces. To determine the forces involved in adhesion dependent on lymphocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule 1 (ICAM-1), we have measured the junctional avidity between single cell pairs consisting of a cloned T cell that expresses LFA-1 and a fibroblast cell that expresses MHC class II molecules and ICAM-1 after transfection. Micromanipulation was used to induce conjugation of cell pairs and to determine the force required to separate the conjugate. T cell adhesion to three related fibroblast cell lines was compared: the parent line that does not express ICAM-1 or other LFA-1 counter-receptors, and two transfectants that have high and moderate levels of surface ICAM-1 expression. The force needed to separate the conjugates varied with the fibroblast ICAM-1 expression levels. The T cell adhesion to ICAM-1-expressing fibroblasts was strong, and the critical separation stresses measured for the three cell lines were 1.4 × 10(3) dyn/cm2 (1 dyn=10(−5) N) for the ICAM-1-negative fibroblast, 4.98 × 10(3) dyn/cm2 for the fibroblast with a moderate level of ICAM-1 expression, and 6.25 × 10(3) dyn/cm2 for the fibroblast line with the highest ICAM-1 expression. The dependence of adhesion strength on the LFA-1/ICAM-1 complex was confirmed by the use of blocking antibodies, which showed the contribution from the interaction of CD4/MHC class II to be negligible.

2013 ◽  
Vol 24 (11) ◽  
pp. 1810-1816 ◽  
Author(s):  
Benjamin Drew Rockett ◽  
Mark Melton ◽  
Mitchel Harris ◽  
Lance C. Bridges ◽  
Saame Raza Shaikh

1993 ◽  
Vol 123 (4) ◽  
pp. 1007-1016 ◽  
Author(s):  
M R Campanero ◽  
M A del Pozo ◽  
A G Arroyo ◽  
P Sánchez-Mateos ◽  
T Hernández-Caselles ◽  
...  

The interaction of lymphocyte function-associated antigen-1 (LFA-1) with its ligands mediates multiple cell adhesion processes of capital importance during immune responses. We have obtained three anti-ICAM-3 mAbs which recognize two different epitopes (A and B) on the intercellular adhesion molecule-3 (ICAM-3) as demonstrated by sequential immunoprecipitation and cross-competitive mAb-binding experiments. Immunoaffinity purified ICAM-3-coated surfaces were able to support T lymphoblast attachment upon cell stimulation with both phorbol esters and cross-linked CD3, as well as by mAb engagement of the LFA-1 molecule with the activating anti-LFA-1 NKI-L16 mAb. T cell adhesion to purified ICAM-3 was completely inhibited by cell pretreatment with mAbs to the LFA-1 alpha (CD11a) or the LFA-beta (CD18) integrin chains. Anti-ICAM-3 mAbs specific for epitope A, but not those specific for epitope B, were able to trigger T lymphoblast homotypic aggregation. ICAM-3-mediated cell aggregation was dependent on the LFA-1/ICAM-1 pathway as demonstrated by blocking experiments with mAbs specific for the LFA-1 and ICAM-1 molecules. Furthermore, immunofluorescence studies on ICAM-3-induced cell aggregates revealed that both LFA-1 and ICAM-1 were mainly located at intercellular boundaries. ICAM-3 was located at cellular uropods, which in small aggregates appeared to be implicated in cell-cell contacts, whereas in large aggregates it appeared to be excluded from cell-cell contact areas. Experiments of T cell adhesion to a chimeric ICAM-1-Fc molecule revealed that the proaggregatory anti-ICAM-3 HP2/19 mAb was able to increase T lymphoblast attachment to ICAM-1, suggesting that T cell aggregation induced by this mAb could be mediated by increasing the avidity of LFA-1 for ICAM-1. Moreover, the HP2/19 mAb was costimulatory with anti-CD3 mAb for T lymphocyte proliferation, indicating that enhancement of T cell activation could be involved in ICAM-3-mediated adhesive phenomena. Altogether, our results indicate that ICAM-3 has a regulatory role on the LFA-1/ICAM-1 pathway of intercellular adhesion.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3325-3332 ◽  
Author(s):  
Anders Woetmann ◽  
Paola Lovato ◽  
Karsten W. Eriksen ◽  
Thorbjørn Krejsgaard ◽  
Tord Labuda ◽  
...  

AbstractBacterial toxins including staphylococcal enterotoxins (SEs) have been implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCLs). Here, we investigate SE-mediated interactions between nonmalignant T cells and malignant T-cell lines established from skin and blood of CTCL patients. The malignant CTCL cells express MHC class II molecules that are high-affinity receptors for SE. Although treatment with SE has no direct effect on the growth of the malignant CTCL cells, the SE-treated CTCL cells induce vigorous proliferation of the SE-responsive nonmalignant T cells. In turn, the nonmalignant T cells enhance proliferation of the malignant cells in an SE- and MHC class II–dependent manner. Furthermore, SE and, in addition, alloantigen presentation by malignant CTCL cells to irradiated nonmalignant CD4+ T-cell lines also enhance proliferation of the malignant cells. The growth-promoting effect depends on direct cell-cell contact and soluble factors such as interleukin-2. In conclusion, we demonstrate that SE triggers a bidirectional cross talk between nonmalignant T cells and malignant CTCL cells that promotes growth of the malignant cells. This represents a novel mechanism by which infections with SE-producing bacteria may contribute to pathogenesis of CTCL.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 886-896 ◽  
Author(s):  
David Sancho ◽  
Marı́a Yáñez-Mó ◽  
Reyes Tejedor ◽  
Francisco Sánchez-Madrid

Abstract Cell adhesion molecules have a key role in the migration of T cells to inflammatory foci. However, the effect of the endothelial-lymphocyte interaction on the activation of the latter cells remains unresolved. We have studied the effect of resting and stimulated endothelial cells (ECs) on the activation of peripheral blood T cells (PBTLs), as assessed by the expression of CD69 and CD25 activation antigens. The incubation of PBTLs with tumor necrosis factor-–activated EC monolayers, either alive or fixed, induced the expression of CD69 but not CD25, preferentially in the CD8+CD45RO+ cell subset. Furthermore, it induced the production of cytokines such as IFN-γ, but not that of interleukin-2 (IL-2) and IL-4. EC treated with other stimuli such as IL-1β, IFN-γ, or lipopolysaccharide also showed the same proactivatory effect on T cells. Lymphocyte activation was almost completely inhibited by blocking anti-CD18 and anti–intercellular adhesion molecule-1 (anti–ICAM-1) monoclonal antibodies (MoAbs), but only slightly affected by MoAbs against CD49d, vascular cell adhesion molecule-1, and anti–IL-15. In addition, the interaction of PBTL with immobilized ICAM-1 induced CD69 expression in the same memory T-cell subset. IL-15 induced T-cell activation with expression of CD69 and CD25, and production of IFN-γ, and its effect was additive with that triggered by cell adhesion to either EC or immobilized ICAM-1. The transmigration of PBTLs through either confluent EC monolayers or ICAM-1–coated membranes also induced efficiently the expression of CD69. When IL-15 was used as chemoattractant in these assays, a further enhancement in CD69 expression was observed in migrated cells. Together these results indicate that stimulated endothelium may have an important role in T-cell activation, through the lymphocyte function antigen-1/ICAM-1 pathway, and that IL-15 efficiently cooperates in this phenomenon. These observations could account for the abundance of CD69+ cells in the lymphocytic infiltrates of several chronic inflammatory diseases.


1999 ◽  
Vol 160 (3) ◽  
pp. 389-400 ◽  
Author(s):  
G Papaccio ◽  
E Ammendola ◽  
FA Pisanti

Pancreases of untreated and nicotinamide (NIC)-treated pre-diabetic (10-week-old) and overtly diabetic (25-week-old) female NOD (non-obese diabetic) mice and of NON (non-obese non-diabetic) control mice were studied, with the following results. (1) Islets and ducts of overtly diabetic untreated NOD mice (25-week-old) were found to express low levels of MHC class I and II molecules, like NON controls, and high levels of adhesive molecules. (2) NIC was able to slightly affect glycaemia and insulitis, slowing down diabetes progression. Moreover it significantly decreased MHC class II expression (but not class I) in vivo by week 10, and significantly enhanced intercellular adhesion molecule-1 (ICAM-1) expression, mainly by week 25, within the pancreas, where 5-bromo-2'-deoxyuridine positive nuclei and insulin positive cells were present, demonstrating that a stimulation of endocrine cell proliferation occurs. (3) In addition, NIC partly counteracted the fall of superoxide dismutase levels, observed in untreated diabetic NOD animals. (4) In vitro studies demonstrated that NIC: (i) was able to significantly reduce nitrite accumulation and to increase NAD+NADH content significantly, and (ii) was able to increase the levels of interleukin-4, a T helper 2 lymphocyte (Th2) protective cytokine, and of interferon-alpha (IFN-alpha), which is known to be able to induce MHC class I and ICAM-1 but not MHC class II expression, as well as IFN-gamma, which is also known to be able to induce MHC class I and ICAM-1 expression. The latter, although known to be a proinflammatory Th1 cytokine, has also recently been found to exert an anti-diabetogenic role. This study therefore clearly shows that adhesive mechanisms are ongoing during the later periods of diabetes in pancreatic ducts of NOD mice, and suggests they may be involved in a persistence of the immune mechanisms of recognition, adhesion and cytolysis and/or endocrine regeneration or differentiation processes, as both NIC-increased ICAM-1 expression and 5-bromo-2'-deoxyuridine positivity imply. The effects of NIC on MHC class II (i.e. a reduction) but not class I, and, mainly, on ICAM-1 expression (i.e. an increase), together with the increase in Th2 protective cytokine levels are very interesting, and could help to explain its mechanism of action and the reasons for alternate success or failure in protecting against type 1 diabetes development.


1998 ◽  
Vol 187 (12) ◽  
pp. 1927-1940 ◽  
Author(s):  
Masahiko Taguchi ◽  
Deepak Sampath ◽  
Takeharu Koga ◽  
Mario Castro ◽  
Dwight C. Look ◽  
...  

Immune cell migration into and through mucosal barrier sites in general and airway sites in particular is a critical feature of immune and inflammatory responses, but the determinants of transepithelial (unlike transendothelial) immune cell traffic are poorly defined. Accordingly, we used primary culture airway epithelial cells and peripheral blood mononuclear cells to develop a cell monolayer system that allows for apical-to-basal and basal-to-apical T cell transmigration that can be monitored with quantitative immunofluorescence flow cytometry. In this system, T cell adhesion and subsequent transmigration were blocked in both directions by monoclonal antibodies (mAbs) against lymphocyte function-associated antigen 1 (LFA-1) or intercellular adhesion molecule 1 (ICAM-1) (induced by interferon γ [IFN-γ] treatment of epithelial cells). The total number of adherent plus transmigrated T cells was also similar in both directions, and this pattern fit with uniform presentation of ICAM-1 along the apical and basolateral cell surfaces. However, the relative number of transmigrated to adherent T cells (i.e., the efficiency of transmigration) was increased in the basal-to-apical relative to the apical-to-basal direction, so an additional mechanism was needed to mediate directional movement towards the apical surface. Screening for epithelial-derived β-chemokines indicated that IFN-γ treatment caused selective expression of RANTES (regulated upon activation, normal T cell expressed and secreted), and the functional significance of this finding was demonstrated by inhibition of epithelial–T cell adhesion and transepithelial migration by anti-RANTES mAbs. In addition, we found that epithelial (but not endothelial) cells preferentially secreted RANTES through the apical cell surface thereby establishing a chemical gradient for chemotaxis across the epithelium to a site where they may be retained by high levels of RANTES and apical ICAM-1. These patterns for epithelial presentation of ICAM-1 and secretion of RANTES appear preserved in airway epithelial tissue studied either ex vivo with expression induced by IFN-γ treatment or in vivo with endogenous expression induced by inflammatory disease (i.e., asthma). Taken together, the results define how the patterns for uniform presentation of ICAM-1 along the cell surface and specific apical sorting of RANTES may serve to mediate the level and directionality of T cell traffic through epithelium (distinct from endothelium) and provide a basis for how this process is precisely coordinated to route immune cells to the mucosal surface and maintain them there under normal and stimulated conditions.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 886-896 ◽  
Author(s):  
David Sancho ◽  
Marı́a Yáñez-Mó ◽  
Reyes Tejedor ◽  
Francisco Sánchez-Madrid

Cell adhesion molecules have a key role in the migration of T cells to inflammatory foci. However, the effect of the endothelial-lymphocyte interaction on the activation of the latter cells remains unresolved. We have studied the effect of resting and stimulated endothelial cells (ECs) on the activation of peripheral blood T cells (PBTLs), as assessed by the expression of CD69 and CD25 activation antigens. The incubation of PBTLs with tumor necrosis factor-–activated EC monolayers, either alive or fixed, induced the expression of CD69 but not CD25, preferentially in the CD8+CD45RO+ cell subset. Furthermore, it induced the production of cytokines such as IFN-γ, but not that of interleukin-2 (IL-2) and IL-4. EC treated with other stimuli such as IL-1β, IFN-γ, or lipopolysaccharide also showed the same proactivatory effect on T cells. Lymphocyte activation was almost completely inhibited by blocking anti-CD18 and anti–intercellular adhesion molecule-1 (anti–ICAM-1) monoclonal antibodies (MoAbs), but only slightly affected by MoAbs against CD49d, vascular cell adhesion molecule-1, and anti–IL-15. In addition, the interaction of PBTL with immobilized ICAM-1 induced CD69 expression in the same memory T-cell subset. IL-15 induced T-cell activation with expression of CD69 and CD25, and production of IFN-γ, and its effect was additive with that triggered by cell adhesion to either EC or immobilized ICAM-1. The transmigration of PBTLs through either confluent EC monolayers or ICAM-1–coated membranes also induced efficiently the expression of CD69. When IL-15 was used as chemoattractant in these assays, a further enhancement in CD69 expression was observed in migrated cells. Together these results indicate that stimulated endothelium may have an important role in T-cell activation, through the lymphocyte function antigen-1/ICAM-1 pathway, and that IL-15 efficiently cooperates in this phenomenon. These observations could account for the abundance of CD69+ cells in the lymphocytic infiltrates of several chronic inflammatory diseases.


2003 ◽  
Vol 278 (38) ◽  
pp. 36763-36776 ◽  
Author(s):  
Elisa Giannoni ◽  
Paola Chiarugi ◽  
Giacomo Cozzi ◽  
Lucia Magnelli ◽  
Maria Letizia Taddei ◽  
...  

1994 ◽  
Vol 180 (5) ◽  
pp. 1665-1673 ◽  
Author(s):  
V A Boussiotis ◽  
G J Freeman ◽  
J D Griffin ◽  
G S Gray ◽  
J G Gribben ◽  
...  

Induction and maintenance of a state of T cell unresponsiveness to specific alloantigen would have significant implications for human organ transplantation. Using human histocompatibility leukocyte antigen DR7-specific helper T cell clones, we demonstrate that blockade of the B7 family of costimulatory molecules is sufficient to induce alloantigen-specific T cell clonal anergy. Anergized cells do not respond to alloantigen and a variety of costimulatory molecules, including B7-1, B7-2, intercellular adhesion molecule-1 (ICAM-1), and lymphocyte function-associated molecule (LFA)-3. However, after culture in exogenous interleukin (IL)-2 for at least 7 d, anergized cells can respond to alloantigen in the presence of LFA-3. LFA-3 costimulation subsequently restores responsiveness to alloantigen in the presence of previously insufficient costimulatory signals. Expression of CD2R epitope is downregulated on anergic cells and is restored after 7 d of IL-2 culture. The loss of the CD2R is temporally associated with the inability of anergized cells to respond to LFA-3. These results suggest that in addition to blockade of B7 family members, inhibition of CD2 and, potentially, other costimulatory pathways that might reverse anergy will be necessary to maintain prolonged alloantigen-specific tolerance.


Sign in / Sign up

Export Citation Format

Share Document