scholarly journals Inhibition of regulated catecholamine secretion from PC12 cells by the Ca2+/calmodulin kinase II inhibitor KN-62

1995 ◽  
Vol 108 (7) ◽  
pp. 2619-2628 ◽  
Author(s):  
E.S. Schweitzer ◽  
M.J. Sanderson ◽  
C.G. Wasterlain

When stimulated by the cholinergic agonist carbachol, PC12 cells rapidly secrete a large fraction of the intracellular catecholamines by exocytotic release from the large dense-core secretory vesicles in a Ca(2+)-dependent manner. To investigate whether Ca2+/calmodulin kinase II plays a role in the regulated secretion of catecholamines, we examined the effect of the specific Ca2+/calmodulin kinase II inhibitor KN-62 on the carbachol-induced release of norepinephrine from PC12 cells. Approximately 50% of the regulated release of norepinephrine, stimulated either by carbachol or direct depolarization, was inhibited by pretreatment with KN-62, while the remaining 50% was resistant to KN-62 and therefore independent of Ca2+/calmodulin kinase II. In contrast, H7, an inhibitor of protein kinase C, had no effect on any of the stimulated release. FURA 2 imaging experiments demonstrated that KN-62 does not act by blocking the stimulation-induced increase in intracellular [Ca2+]. The most likely model consistent with these data is that all the dense-core vesicles fuse with the plasma membrane in a Ca(2+)-dependent process, but that approximately 50% of the vesicles require an additional step that is dependent on the action of Ca2+/calmodulin kinase II. This step occurs between the influx of Ca2+ and the fusion of vesicle membranes with the plasma membrane, and may be analogous to the Ca2+/calmodulin kinase II phosphorylation of synapsin which mobilizes small, clear synaptic vesicles for exocytosis at the synapse.

1998 ◽  
Vol 140 (3) ◽  
pp. 685-698 ◽  
Author(s):  
Chung-Jiuan Jeng ◽  
Steven A. McCarroll ◽  
Thomas F. J. Martin ◽  
Erik Floor ◽  
James Adams ◽  
...  

Thy-1, a glycosylphosphatidylinositol-linked integral membrane protein of the immunoglobulin superfamily, is a component of both large dense-core and small clear vesicles in PC12 cells. A majority of this protein, formerly recognized only on the plasma membrane of neurons, is localized to regulated secretory vesicles. Thy-1 is also present in synaptic vesicles in rat central nervous system. Experiments on permeabilized PC12 cells demonstrate that antibodies against Thy-1 inhibit the regulated release of neurotransmitter; this inhibition appears to be independent of any effect on the Ca2+ channel. These findings suggest Thy-1 is an integral component of many types of regulated secretory vesicles, and plays an important role in the regulated vesicular release of neurotransmitter at the synapse.


1997 ◽  
Vol 325 (2) ◽  
pp. 455-463 ◽  
Author(s):  
Tatsumi HARUTA ◽  
Noboru TAKAMI ◽  
Manami OHMURA ◽  
Yoshio MISUMI ◽  
Yukio IKEHARA

The synaptic vesicle exocytosis occurs by a highly regulated mechanism: syntaxin and 25 kDa synaptosome-associated protein (SNAP-25) are assembled with vesicle-associated membrane protein (VAMP) to form a synaptic core complex and then synaptotagmin participates as a Ca2+ sensor in the final step of membrane fusion. The 43 kDa growth-associated protein GAP-43 is a nerve-specific protein that is predominantly localized in the axonal growth cones and presynaptic terminal membrane. In the present study we have examined a possible interaction of GAP-43 with components involved in the exocytosis. GAP-43 was found to interact with syntaxin, SNAP-25 and VAMP in rat brain tissues and nerve growth factor-dependently differentiated PC12 cells, but not in undifferentiated PC12 cells. GAP-43 also interacted with synaptotagmin and calmodulin. These interactions of GAP-43 could be detected only when chemical cross-linking of proteins was performed before they were solubilized from the membranes with detergents, in contrast with the interaction of the synaptic core complex, which was detected without cross-linking. Experiments invitro showed that the interaction of GAP-43 with these proteins occurred Ca2+-dependently; its maximum binding with the core complex was observed at 100 μM Ca2+, whereas that of syntaxin with synaptotagmin was at 200 μM Ca2+. These values of Ca2+ concentration are close to that required for the Ca2+-dependent release of neurotransmitters. Furthermore we observed that the interaction invitro of GAP-43 with the synaptic core complex was coupled with protein kinase C-mediated phosphorylation of GAP-43. Taken together, our results suggest a novel function of GAP-43 that is involved in the Ca2+-dependent fusion of synaptic vesicles.


2004 ◽  
Vol 279 (50) ◽  
pp. 52677-52684 ◽  
Author(s):  
Mitsunori Fukuda ◽  
Eiko Kanno ◽  
Megumi Satoh ◽  
Chika Saegusa ◽  
Akitsugu Yamamoto

It has recently been proposed that synaptotagmin (Syt) VII functions as a plasma membrane Ca2+sensor for dense-core vesicle exocytosis in PC12 cells based on the results of transient overexpression studies using green fluorescent protein (GFP)-tagged Syt VII; however, the precise subcellular localization of Syt VII is still a matter of controversy (plasma membraneversussecretory granules). In this study we established a PC12 cell line “stably expressing” the Syt VII-GFP molecule and demonstrated by immunocytochemical and immunoelectron microscopic analyses that the Syt VII-GFP protein is localized on dense-core vesicles as well as in other intracellular membranous structures, such as thetrans-Golgi network and lysosomes. Syt VII-GFP forms a complex with endogenous Syts I and IX, but not with Syt IV, and it colocalize well with Syts I and IX in the cellular processes (where dense-core vesicles are accumulated) in the PC12 cell line. We further demonstrated by an N-terminal antibody-uptake experiment that Syt VII-GFP-containing dense-core vesicles undergo Ca2+-dependent exocytosis, the same as endogenous Syt IX-containing vesicles. Moreover, silencing of Syt VII-GFP with specific small interfering RNA dramatically reduced high KCl-dependent neuropeptide Y secretion from the stable PC12 cell line (∼60% of the control cells), whereas the same small interfering RNA had little effect on neuropeptide Y secretion from the wild-type PC12 cells (∼85–90% of the control cells), indicating that the level of endogenous expression of Syt VII molecules must be low. Our results indicate that the targeting of Syt VII-GFP molecules to specific membrane compartment(s) is affected by the transfection method (transient expressionversusstable expression) and suggested that Syt VII molecule on dense-core vesicles functions as a vesicular Ca2+sensor for exocytosis in endocrine cells.


2011 ◽  
Vol 22 (24) ◽  
pp. 4908-4917 ◽  
Author(s):  
Deepti Gadi ◽  
Alice Wagenknecht-Wiesner ◽  
David Holowka ◽  
Barbara Baird

Protein kinase C β (PKCβ) participates in antigen-stimulated mast cell degranulation mediated by the high-affinity receptor for immunoglobulin E, FcεRI, but the molecular basis is unclear. We investigated the hypothesis that the polybasic effector domain (ED) of the abundant intracellular substrate for protein kinase C known as myristoylated alanine-rich protein kinase C substrate (MARCKS) sequesters phosphoinositides at the inner leaflet of the plasma membrane until MARCKS dissociates after phosphorylation by activated PKC. Real-time fluorescence imaging confirms synchronization between stimulated oscillations of intracellular Ca2+concentrations and oscillatory association of PKCβ–enhanced green fluorescent protein with the plasma membrane. Similarly, MARCKS-ED tagged with monomeric red fluorescent protein undergoes antigen-stimulated oscillatory dissociation and rebinding to the plasma membrane with a time course that is synchronized with reversible plasma membrane association of PKCβ. We find that MARCKS-ED dissociation is prevented by mutation of four serine residues that are potential sites of phosphorylation by PKC. Cells expressing this mutated MARCKS-ED SA4 show delayed onset of antigen-stimulated Ca2+mobilization and substantial inhibition of granule exocytosis. Stimulation of degranulation by thapsigargin, which bypasses inositol 1,4,5-trisphosphate production, is also substantially reduced in the presence of MARCKS-ED SA4, but store-operated Ca2+entry is not inhibited. These results show the capacity of MARCKS-ED to regulate granule exocytosis in a PKC-dependent manner, consistent with regulated sequestration of phosphoinositides that mediate granule fusion at the plasma membrane.


1998 ◽  
Vol 333 (1) ◽  
pp. 193-199 ◽  
Author(s):  
Aristea E. POULI ◽  
Evaggelia EMMANOUILIDOU ◽  
Chao ZHAO ◽  
Christina WASMEIER ◽  
John C. HUTTON ◽  
...  

To image the behaviour in real time of single secretory granules in neuroendocrine cells we have expressed cDNA encoding a fusion construct between the dense-core secretory-granule-membrane glycoprotein, phogrin (phosphatase on the granule of insulinoma cells), and enhanced green fluorescent protein (EGFP). Expressed in INS-1 β-cells and pheochromocytoma PC12 cells, the chimaera was localized efficiently (up to 95%) to dense-core secretory granules (diameter 200–1000 nm), identified by co-immunolocalization with anti-(pro-)insulin antibodies in INS-1 cells and dopamine β-hydroxylase in PC12 cells. Using laser-scanning confocal microscopy and digital image analysis, we have used this chimaera to monitor the effects of secretagogues on the dynamics of secretory granules in single living cells. In unstimulated INS-1 β-cells, granule movement was confined to oscillatory movement (dithering) with period of oscillation 5–10 s and mean displacement < 1 µm. Both elevated glucose concentrations (30 mM), and depolarization of the plasma membrane with K+, provoked large (5–10 µm) saltatory excursions of granules across the cell, which were never observed in cells maintained at low glucose concentration. By contrast, long excursions of granules occurred in PC12 cells without stimulation, and occurred predominantly from the cell body towards the cell periphery and neurite extensions. Purinergic-receptor activation with ATP provoked granule movement towards the membrane of PC12 cells, resulting in the transfer of fluorescence to the plasma membrane consistent with fusion of the granule and diffusion of the chimaera in the plasma membrane. These results illustrate the potential use of phogrin–EGFP chimeras in the study of secretory-granule dynamics, the regulation of granule–cytoskeletal interactions and the trafficking of a granule-specific transmembrane protein during the cycle of exocytosis and endocytosis.


1999 ◽  
Vol 10 (11) ◽  
pp. 3979-3990 ◽  
Author(s):  
Anastasiya D. Blagoveshchenskaya ◽  
Eric W. Hewitt ◽  
Daniel F. Cutler

One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents.


1998 ◽  
Vol 111 (2) ◽  
pp. 161-169 ◽  
Author(s):  
A. Balogh ◽  
S. Cadel ◽  
T. Foulon ◽  
R. Picart ◽  
A. Der Garabedian ◽  
...  

Aminopeptidase B (Ap-B) is a Zn2+-dependent exopeptidase which selectively removes Arg and/or Lys residues from the N terminus of several peptide substrates. Isolated and characterized from rat testes, this ubiquitous enzyme may participate in the final stages of precursor processing mechanisms. To test this hypothesis, we have investigated the secretion and subcellular localization of this enzyme in a rat cell line of pheochromocytoma (PC12 cells). By using a combination of biochemical and immunocytochemical methods, the following observations were made: (i) the level of aminopeptidase B detectable in the cell culture medium increased with time; (ii) 8-bromo-adenosine 3′-5′-cyclic monophosphate and the Ca2+ ionophore A23187 both stimulated enzyme liberation in the culture medium; (iii) brefeldin A, an inhibitor of vesicular transport from the endoplasmic reticulum to the Golgi apparatus, decreased enzyme secretion in a time-dependent manner; (iv) whereas nocodazole, a microtubule depolymerizing agent, inhibited enzyme secretion, cytochalasin D, a microfilament disruption agent, had no effect on released aminopeptidase B level; (v) immunofluorescence demonstrated the presence of aminopeptidase B in the Golgi apparatus; (vi) immunofluorescence, electron microscopy and tests of enzyme activity on intact cells showed an association of the peptidase with the external face of the plasma membrane. Together these data strongly argued in favour of the enzyme secretion by PC12 cells. It is concluded that aminopeptidase B may participate in processing events occurring either during its intracellular transport along the secretory pathway or at the plasma membrane level, or both.


Sign in / Sign up

Export Citation Format

Share Document