N-cadherin in adult rat cardiomyocytes in culture. I. Functional role of N-cadherin and impairment of cell-cell contact by a truncated N-cadherin mutant

1996 ◽  
Vol 109 (1) ◽  
pp. 1-10 ◽  
Author(s):  
C.M. Hertig ◽  
M. Eppenberger-Eberhardt ◽  
S. Koch ◽  
H.M. Eppenberger

N-cadherin is a transmembrane Ca(2+)-dependent glycoprotein that is part of adherens junctions. It functions with the cell adhesion N-terminal extracellular domain as a site of homophilic cell-cell contacts. The intracellular C-terminal domain provides via a catenin complex the interaction with the cytoskeleton. Ectopic expression of chicken N-cadherin in adult rat cardiomyocytes (ARC) in culture was obtained after microinjection into non-dividing cardiomyocytes; it was demonstrated that the exogenous protein colocalized with the endogenous N-cadherin at the plasma membrane of the cell and formed contact sites. A dominant negative chicken N-cadherin mutant was constructed by a large deletion of the extracellular domain. This mutant was expressed and inhibited the function of the endogenous rat N-cadherin probably by competing for the catenin complex binding domain, which is essential for the formation of a stable cell-cell contact of ARC. The injected cells lost contact with neighbouring cells and retracted; the connexons of the gap junctions were pulled out as well. This could be avoided by another N-cadherin mutation, which, in addition to the N-terminal truncation, contained a deletion of the catenin binding domain. In the case of the truncated N-cadherin at the N terminus, the sarcomeric structure of the myofibrils of ARC was also affected. Myofibrils were the most vulnerable cytoskeletal structures affected by the overexpressed dominant negative N-cadherin mutation. Similar behaviour was shown when cardiomyocytes separated following Ca2+ depletion and when new cell-cell contacts were formed after Ca2+ replenishment. N-cadherin is thought to be the essential component for establishing new cell-cell contacts which eventually led to a new formation of intercalated disc-like structures in the cardiac cell culture.

1996 ◽  
Vol 109 (1) ◽  
pp. 11-20 ◽  
Author(s):  
C.M. Hertig ◽  
S. Butz ◽  
S. Koch ◽  
M. Eppenberger-Eberhardt ◽  
R. Kemler ◽  
...  

The spatio-temporal appearance and distribution of proteins forming the intercalated disc were investigated in adult rat cardiomyocytes (ARC). The ‘redifferentiation model’ of ARC involves extensive remodelling of the plasma membrane and of the myofibrillar apparatus. It represents a valuable system to elucidate the formation of cell-cell contact between cardiomyocytes and to assess the mechanisms by which different proteins involved in the cell-cell adhesion process are sorted in a precise manner to the sites of function. Appearance of N-cadherin, the catenins and connexin43 within newly formed adherens and gap junctions was studied. Here first evidence is provided for a formation of two distinct and separable N-cadherin/catenin complexes in cardiomyocytes. Both complexes are composed of N-cadherin and alpha-catenin which bind to either beta-catenin or plakoglobin in a mutually exclusive manner. The two N-cadherin/catenin complexes are assumed to be functionally involved in the formation of cell-cell contacts in ARC; however, the differential appearance and localization of the two types of complexes may also point to a specific role during ARC differentiation. The newly synthesized beta-catenin containing complex is more abundant during the first stages in culture after ARC isolation, while the newly synthesized plakoglobin containing complex progressively accumulates during the morphological changes of ARC. ARC formed a tissue-like pattern in culture whereby the new cell-cell contacts could be dissolved through Ca2+ depletion. Presence of cAMP and replenishment of Ca2+ content in the culture medium not only allowed reformation of cell-cell contacts but also affected the relative protein ratio between the two N-cadherin/catenin complexes, increasing the relative amount of newly synthesized beta-catenin over plakoglobin at a particular stage of ARC differentiation. The clustered N-cadherin/catenin complexes at the plasma membrane appear to be a prerequisite for the following gap junction formation; a temporal sequence of the appearance of adherens junction proteins and of gap junctions forming connexin-43 is suggested.


2002 ◽  
Vol 13 (2) ◽  
pp. 683-697 ◽  
Author(s):  
Qize Wei ◽  
Robert S. Adelstein

We ectopically expressed the transcription factor Pitx2a, one of the Pitx2 isoforms, in HeLa cells by using a tetracycline-inducible expression system and examined whether Pitx2a was capable of modulating Rho GTPase signaling and altering the cell's cytoskeleton. Ectopic expression of Pitx2a induced actin-myosin reorganization, leading to increased cell spreading, suppression of cell migration, and the strengthening of cell-cell adhesion, marked by the accumulation and localization of β-catenin and N-cadherin to the sites of cell-cell contacts. Moreover, Pitx2a expression resulted in activation of the Rho GTPases Rac1 and RhoA, and the dominant negative Rac1 mutant N17Rac1 inhibited cell spreading and disrupted localization of β-catenin to the sites of cell-cell contacts. Both reorganization of actin-myosin and cell spreading require phosphatidylinositol 3-kinase activity, which is also necessary for activation of the Rho GTPase proteins. Pitx2a induced the expression of Trio, a guanine nucleotide exchange factor for Rac1 and RhoA, which preceded cell spreading, and the expression of Trio protein was down-regulated after the changes in cell spreading and cell morphology were initiated. In addition, Pitx2a also induces cell cycle arrest at G0/G1, most likely due to the accumulation of the tumor suppressor proteins p53 and p21. Our data indicate that the transcriptional activities initiated in the nucleus by Pitx2a result in profound changes in HeLa cell morphology, migration, and proliferation.


2013 ◽  
Vol 24 (3) ◽  
pp. 234-245 ◽  
Author(s):  
Sophie Charrasse ◽  
Franck Comunale ◽  
Sylvain De Rossi ◽  
Arnaud Echard ◽  
Cécile Gauthier-Rouvière

Cadherins are homophilic cell–cell adhesion molecules implicated in many fundamental processes, such as morphogenesis, cell growth, and differentiation. They accumulate at cell–cell contact sites and assemble into large macromolecular complexes named adherens junctions (AJs). Cadherin targeting and function are regulated by various cellular processes, many players of which remain to be uncovered. Here we identify the small GTPase Rab35 as a new regulator of cadherin trafficking and stabilization at cell–cell contacts in C2C12 myoblasts and HeLa cells. We find that Rab35 accumulates at cell–cell contacts in a cadherin-dependent manner. Knockdown of Rab35 or expression of a dominant-negative form of Rab35 impaired N- and M-cadherin recruitment to cell–cell contacts, their stabilization at the plasma membrane, and association with p120 catenin and led to their accumulation in transferrin-, clathrin-, and AP-2–positive intracellular vesicles. We also find that Rab35 function is required for PIP5KIγ accumulation at cell–cell contacts and phosphatidyl inositol 4,5-bisphosphate production, which is involved in cadherin stabilization at contact sites. Finally, we show that Rab35 regulates myoblast fusion, a major cellular process under the control of cadherin-dependent signaling. Taken together, these results reveal that Rab35 regulates cadherin-dependent AJ formation and myoblast fusion.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Sarah B. Geisler ◽  
Kathleen J. Green ◽  
Lori L. Isom ◽  
Sasha Meshinchi ◽  
Jeffrey R. Martens ◽  
...  

The intercalated disk (ID) is a complex structure that electromechanically couples adjoining cardiac myocytes into a functional syncitium. The integrity of the disk is essential for normal cardiac function, but how the diverse elements are assembled into a fully integrated structure is not well understood. In this study, we examined the assembly of new IDs in primary cultures of adult rat cardiac myocytes. From 2 to 5 days after dissociation, the cells flatten and spread, establishing new cell-cell contacts in a manner that recapitulates the in vivo processes that occur during heart development and myocardial remodeling. As cells make contact with their neighbors, transmembrane adhesion proteins localize along the line of apposition, concentrating at the sites of membrane attachment of the terminal sarcomeres. Cx43 gap junctions and ankyrin-G, an essential cytoskeletal component of voltage gated sodium channel complexes, were secondarily recruited to membrane domains involved in cell-cell contacts. The consistent order of the assembly process suggests that there are specific scaffolding requirements for integration of the mechanical and electrochemical elements of the disk. Defining the relationships that are the foundation of disk assembly has important implications for understanding the mechanical dysfunction and cardiac arrhythmias that accompany alterations of ID architecture.


2004 ◽  
Vol 165 (4) ◽  
pp. 517-528 ◽  
Author(s):  
Takuji Tanoue ◽  
Masatoshi Takeichi

Fat cadherins form a distinct subfamily of the cadherin gene superfamily, and are featured by their unusually large extracellular domain. In this work, we investigated the function of a mammalian Fat cadherin. Fat1 was localized at filopodial tips, lamellipodial edges, and cell–cell boundaries, overlapping with dynamic actin structures. RNA interference–mediated knockdown of Fat1 resulted in disorganization of cell junction–associated F-actin and other actin fibers/cables, disturbance of cell–cell contacts, and also inhibition of cell polarity formation at wound margins. Furthermore, we identified Ena/vasodilator-stimulated phosphoproteins as a potential downstream effector of Fat1. These results suggest that Fat1 regulates actin cytoskeletal organization at cell peripheries, thereby modulating cell contacts and polarity.


2020 ◽  
Author(s):  
Anna H. Lippert ◽  
Ivan B. Dimov ◽  
Alexander Winkel ◽  
James McColl ◽  
Jane Humphrey ◽  
...  

AbstractThe T-cell receptor (TCR) is thought to be triggered either by mechano-transduction or local tyrosine phosphatase exclusion at cell-cell contacts. However, the effects of the mechanical properties of activating surfaces have only been tested for late-stage T-cell activation, and phosphatase segregation has mostly been studied on glass-supported lipid bilayers that favor imaging but are orders-of-magnitude stiffer than typical cells. We developed a method for attaching lipid bilayers to polydimethylsiloxane polymer supports, producing ‘soft bilayers’ with physiological levels of mechanical resistance (Young’s modulus of 4 kPa). Comparisons of T-cell behavior on soft and glass-supported bilayers revealed that early calcium signaling is unaffected by substrate rigidity, implying that early steps in TCR triggering are not mechanosensitive. Robust phosphatase exclusion was observed on the soft bilayers, however, suggesting it likely occurs at cell-cell contacts. This work sets the stage for an imaging-based exploration of receptor signaling under conditions closely mimicking physiological cell-cell contact.


2010 ◽  
Vol 298 (2) ◽  
pp. H570-H579 ◽  
Author(s):  
Chengqun Huang ◽  
Wayne Liu ◽  
Cynthia N. Perry ◽  
Smadar Yitzhaki ◽  
Youngil Lee ◽  
...  

Previously, we showed that sulfaphenazole (SUL), an antimicrobial agent that is a potent inhibitor of cytochrome P4502C9, is protective against ischemia-reperfusion (I/R) injury (Ref. 15 ). The mechanism, however, underlying this cardioprotection, is largely unknown. With evidence that activation of autophagy is protective against simulated I/R in HL-1 cells, and evidence that autophagy is upregulated in preconditioned hearts, we hypothesized that SUL-mediated cardioprotection might resemble ischemic preconditioning with respect to activation of protein kinase C and autophagy. We used the Langendorff model of global ischemia to assess the role of autophagy and protein kinase C in myocardial protection by SUL during I/R. We show that SUL enhanced recovery of function, reduced creatine kinase release, decreased infarct size, and induced autophagy. SUL also triggered PKC translocation, whereas inhibition of PKC with chelerythrine blocked the activation of autophagy in adult rat cardiomyocytes. In the Langendorff model, chelerythrine suppressed autophagy and abolished the protection mediated by SUL. SUL increased autophagy in adult rat cardiomyocytes infected with GFP-LC3 adenovirus, in isolated perfused rat hearts, and in mCherry-LC3 transgenic mice. To establish the role of autophagy in cardioprotection, we used the cell-permeable dominant-negative inhibitor of autophagy, Tat-Atg5K130R. Autophagy and cardioprotection were abolished in rat hearts perfused with recombinant Tat-Atg5K130R. Taken together, these studies indicate that cardioprotection mediated by SUL involves a PKC-dependent induction of autophagy. The findings suggest that autophagy may be a fundamental process that enhances the heart's tolerance to ischemia.


1989 ◽  
Vol 109 (3) ◽  
pp. 1047-1056 ◽  
Author(s):  
J M Anderson ◽  
C M Van Itallie ◽  
M D Peterson ◽  
B R Stevenson ◽  
E A Carew ◽  
...  

We previously identified and characterized ZO-1 as a peripheral membrane protein specifically associated with the cytoplasmic surface of tight junctions. Here we describe the identification of partial cDNA sequences encoding rat and human ZO-1 and their use to study the assembly of tight junctions in the Caco-2 human intestinal epithelial cell line. A rat cDNA was isolated from a lambda-gtll expression library by screening with mAbs. Polyclonal antibodies were raised to cDNA-encoded fusion protein; several properties of these antibodies support this cDNA as encoding ZO-1. Expression of ZO-1 mRNA occurs in the rat and Caco-2 cells with a major transcript of approximately 7.5 kb. To disrupt tight junctions and study the subsequent process of assembly, Caco-2 cells were grown in suspension for 48 h in Ca++/Mg++-free spinner medium during which time they lose cell-cell contacts, become round, and by immunofluorescence microscopy show diffuse and speckled localization of ZO-1. Within hours of replating at confluent density in Ca++/Mg++-containing media, attached cells show discrete localization of ZO-1 at cell-cell contacts. Within 2 d, fully confluent monolayers form, and ZO-1 localizes in a continuous gasket-like fashion circumscribing all cells. ZO-1 mRNA levels are highest in cells in spinner culture, and upon replating rapidly fall and plateau at approximately 10% of initial levels after 2-3 wk in culture. ZO-1 protein levels are lowest in contact-free cells and rise five- to eightfold over the same period. In contrast, mRNA levels for sucrase-isomaltase, an apical membrane hydrolase, increase only after a confluent monolayer forms. Thus, in this model of contact-dependent assembly of the tight junction, there is both a rapid assembly beginning upon cell-cell contact, as well as a long-term modulation involving changes in expression of ZO-1 mRNA and protein levels.


2005 ◽  
Vol 16 (5) ◽  
pp. 2168-2180 ◽  
Author(s):  
Marie Causeret ◽  
Nicolas Taulet ◽  
Franck Comunale ◽  
Cyril Favard ◽  
Cécile Gauthier-Rouvière

Cadherins are homophilic cell-cell adhesion molecules implicated in cell growth, differentiation, and organization into tissues during embryonic development. They accumulate at cell-cell contact sites and act as adhesion-activated signaling receptors. Here, we show that the dynamic assembly of N-cadherin at cell-cell contacts involves lipid rafts. In C2C12 myoblasts, immunofluorescence and biochemical experiments demonstrate that N-cadherin present at cell-cell contacts is colocalized with lipid rafts. Disruption of lipid rafts leads to the inhibition of cell-cell adhesion and disorganization of N-cadherin–dependent cell-cell contacts without modifying the association of N-cadherin with catenins and its availability at the plasma membrane. Fluorescent recovery after photobleaching experiments demonstrate that at the dorsal plasma membrane, lipid rafts are not directly involved in the diffusional mobility of N-cadherin. In contrast, at cell-cell junctions N-cadherin association with lipid rafts allows its stabilization enabling the formation of a functional adhesive complex. We show that lipid rafts, as homophilic interaction and F-actin association, stabilize cadherin-dependent adhesive complexes. Homophilic interactions and F-actin association of N-cadherin are both required for its association to lipid rafts. We thus identify lipid rafts as new regulators of cadherin-mediated cell adhesion.


Sign in / Sign up

Export Citation Format

Share Document