scholarly journals Evidence that the Synchronized Production of New Basal Bodies is not Associated with Dna Synthesis in Stentor Coeruleus

1972 ◽  
Vol 11 (2) ◽  
pp. 621-637
Author(s):  
K. B. YOUNGER ◽  
S. BANERJEE ◽  
J. K. KELLEHER ◽  
M. WINSTON ◽  
LYNN MARGULIS

Stentors were induced to produce synchronously thousands of new ciliated oral membranellar band basal bodies in less than 3 h. DNA synthesis does not accompany this process, as determined by [3H]thymidine incorporation into isolated bands and by sensitivity to DNA synthesis inhibitors (mitomycin C, ethidium bromide, cytosine arabinoside and hydroxyurea). Yet DNA could be detected in the cortex and the band at basal body sites by autoradiography. Since [3H]thymidine incorporation into membranellar band was eliminated in concentrations of ethidium bromide that had no effect on basal body formation, the previous reports of ciliate kinetosomal (basal body) DNA are interpreted as due to mitochondrial contamination. Specific cortical patterns of DNA that could have been easily misinterpreted as basal body-related were especially apparent in autoradiographs using [3H]actinomycin D as a ‘stain’. In no experiment involving induced basal body regeneration could evidence be found for a correlation between new basal body production and DNA synthesis; RNA and protein synthesis correlated with basal body and cilia regeneration were, however, easily detected by the same techniques. We concluded that there is no evidence that basal body DNA synthesis is required for new basal body production.

mSphere ◽  
2016 ◽  
Vol 1 (6) ◽  
Author(s):  
Westley Heydeck ◽  
Alexander J. Stemm-Wolf ◽  
Janin Knop ◽  
Christina C. Poh ◽  
Mark Winey

ABSTRACT Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin’s roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively. Basal bodies are essential microtubule-based structures that template, anchor, and orient cilia at the cell surface. Cilia act primarily in the generation of directional fluid flow and sensory reception, both of which are utilized for a broad spectrum of cellular processes. Although basal bodies contribute to vital cell functions, the molecular contributors of their assembly and maintenance are poorly understood. Previous studies of the ciliate Tetrahymena thermophila revealed important roles for two centrin family members in basal body assembly, separation of new basal bodies, and stability. Here, we characterize the basal body function of a centrin-binding protein, Sfr1, in Tetrahymena. Sfr1 is part of a large family of 13 proteins in Tetrahymena that contain Sfi1 repeats (SFRs), a motif originally identified in Saccharomyces cerevisiae Sfi1 that binds centrin. Sfr1 is the only SFR protein in Tetrahymena that localizes to all cortical row and oral apparatus basal bodies. In addition, Sfr1 resides predominantly at the microtubule scaffold from the proximal cartwheel to the distal transition zone. Complete genomic knockout of SFR1 (sfr1Δ) causes a significant increase in both cortical row basal body density and the number of cortical rows, contributing to an overall overproduction of basal bodies. Reintroduction of Sfr1 into sfr1Δ mutant cells leads to a marked reduction of cortical row basal body density and the total number of cortical row basal bodies. Therefore, Sfr1 directly modulates cortical row basal body production. This study reveals an inhibitory role for Sfr1, and potentially centrins, in Tetrahymena basal body production. IMPORTANCE Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin’s roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively.


1971 ◽  
Vol 50 (1) ◽  
pp. 10-34 ◽  
Author(s):  
Richard G. W. Anderson ◽  
Robert M. Brenner

Basal body replication during estrogen-driven ciliogenesis in the rhesus monkey (Macaca mulatta) oviduct has been studied by stereomicroscopy, rotation photography, and serial section analysis. Two pathways for basal body production are described: acentriolar basal body formation (major pathway) where procentrioles are generated from a spherical aggregate of fibers; and centriolar basal body formation, where procentrioles are generated by the diplosomal centrioles. In both pathways, the first step in procentriole formation is the arrangement of a fibrous granule precursor into an annulus. A cartwheel structure, present within the lumen of the annulus, is composed of a central cylinder with a core, spoke components, and anchor filaments. Tubule formation consists of an initiation and a growth phase. The A tubule of each triplet set first forms within the wall material of the annulus in juxtaposition to a spoke of the cartwheel. After all nine A tubules are initiated, B and C tubules begin to form. The initiation of all three tubules occurs sequentially around the procentriole. Simultaneous with tubule initiation is a nonsequential growth of each tubule. The tubules lengthen and the procentriole is complete when it is about 200 mµ long. The procentriole increases in length and diameter during its maturation into a basal body. The addition of a basal foot, nine alar sheets, and a rootlet completes the maturation process. Fibrous granules are also closely associated with the formation of these basal body accessory structures.


2018 ◽  
Author(s):  
Hao Lu ◽  
Priyanka Anujan ◽  
Feng Zhou ◽  
Yiliu Zhang ◽  
Yan Ling Chong ◽  
...  

ABSTRACTMotile cilia on multiciliated cells (MCCs) function in fluid clearance over epithelia. Studies with Xenopus embryos and patients with the congenital respiratory disorder reduced generation of multiple motile cilia, have implicated the nuclear protein MCIDAS (MCI), in the transcriptional regulation of MCC specification and differentiation. Recently, a paralogous protein, GMNC, was also shown to be required for MCC formation. Surprisingly, and in contrast to the presently held view, we find that Mci mutant mice can specify MCC precursors. However, these precursors cannot produce multiple basal bodies, and mature into single ciliated cells. We show that MCI is required specifically to induce deuterosome pathway components for the production of multiple basal bodies. Moreover, GMNC and MCI associate differentially with the cell-cycle regulators E2F4 and E2F5, which enables them to activate distinct sets of target genes (ciliary transcription factor genes versus genes for basal body generation). Our data establish a previously unrecognized two-step model for MCC development: GMNC functions in the initial step for MCC precursor specification. GMNC induces Mci expression, which then drives the second step of basal body production for multiciliation.SUMMARY STATEMENTWe show how two GEMININ family proteins function in mammalian multiciliated cell development: GMNC regulates precursor specification and MCIDAS induces multiple basal body formation for multiciliation.


2014 ◽  
Vol 52 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Józef Koawalczyk

The leaves of <em>Kalanchoe daigremontiana</em> wounded and infected with <em>Agrobacterium tumefaciens</em> were treated with single doses of inhibitors (hydroxyurea - 190, mitomycin - 0.5, actinomycin - 2 µ,g per leaf). After delaying the time' of dosage of inhibitors during five days after inoculation, changes in susceptibility of the system to antitumorous activity of analysed compounds were observed. In several hours after inoculation (period of the bacteria metabolic activity in wounds) all the inhibitors prevent strongly the tumour formation. At the time between 14 and 72 hours after inoculation, including the phase of tumour induction, the system becomes sensitive to the DNA synthesis inhibitors, particularly hydroxyurea. The intensified action of actinomycin appears again only about 60 hours after inoculation and lasts till the end of experiment (the initiation of the transformed plant cell proliferation). According to the literature the antitumorous effect of inhibitors could be connected with their action on the bacteria metabolism inside the host tissue. The activities of hydroxyurea and mitomycin in the second period correspond with the intensive DNA synthesis in plant cells, which is induced by wounding. The effect of actinomycin D in 60 hours after inoculation could depend upon the inhibition of the proliferation of the transformed host cells.


1989 ◽  
Vol 257 (1) ◽  
pp. G145-G150 ◽  
Author(s):  
D. D. Ginty ◽  
D. L. Osborne ◽  
E. R. Seidel

Experiments were designed to examine the effects of exogenously supplied putrescine on the synthesis of DNA, RNA, and protein in cultured epithelial cells (IEC-6). Putrescine increased aphidicolin-sensitive DNA synthesis at concentrations as low as 0.3 microM putrescine with maximal stimulation (267% control) at 10 microM. This response appeared to be an effect of increases in the intracellular concentration of putrescine as the intracellular levels of spermidine and spermine did not change over the time period examined. Furthermore, pulse-chase experiments revealed that putrescine that entered the cell was not metabolized to another polyamine or degraded. In addition, 10 microM putrescine enhanced both cycloheximide-sensitive lysine incorporation and actinomycin D-sensitive uridine incorporation, indexes of protein and RNA synthesis, respectively. Incorporation of both lysine and uridine was maximal 12 h after the addition of putrescine, whereas thymidine incorporation was still increasing at 24 h, the longest time point examined. These data suggest that putrescine synthesis and/or transport during mucosal proliferation is directly involved in the stimulation of epithelial DNA, RNA, and protein synthesis.


1999 ◽  
Vol 112 (24) ◽  
pp. 4641-4650 ◽  
Author(s):  
A. Ploubidou ◽  
D.R. Robinson ◽  
R.C. Docherty ◽  
E.O. Ogbadoyi ◽  
K. Gull

Trypanosoma brucei has a single nucleus and a single kinetoplast (the mitochondrial genome). Each of these organelles has a distinct S phase, which is followed by a segregation period, prior to cell division. The segregation of the two genomes takes place in a specific temporal order by interaction with microtubule-based structures, the spindle for nuclear DNA and the flagellum basal bodies for the kinetoplast DNA. We used rhizoxin, the anti-microtubule agent and polymerisation inhibitor, or the nuclear DNA synthesis inhibitor aphidicolin, to interfere with cell cycle events in order to study how such events are co-ordinated. We show that T. brucei cytokinesis is not dependent upon either mitosis or nuclear DNA synthesis, suggesting that there are novel cell cycle checkpoints in this organism. Moreover, use of monoclonal antibodies to reveal cytoplasmic events such as basal body duplication shows that some aphidicolin treated cells appear to be in G(1) phase (1K1N) but have activated some cytoplasmic events characteristic of G(2) phase (basal body segregation). We discuss a possible dominant role in trypanosomes for kinetoplast/basal body segregation in control of later cell cycle events such as cytokinesis


Author(s):  
Robert Hard ◽  
Gerald Rupp ◽  
Matthew L. Withiam-Leitch ◽  
Lisa Cardamone

In a coordinated field of beating cilia, the direction of the power stroke is correlated with the orientation of basal body appendages, called basal feet. In newt lung ciliated cells, adjacent basal feet are interconnected by cold-stable microtubules (basal MTs). In the present study, we investigate the hypothesis that these basal MTs stabilize ciliary distribution and alignment. To accomplish this, newt lung primary cultures were treated with the microtubule disrupting agent, Colcemid. In newt lung cultures, cilia normally disperse in a characteristic fashion as the mucociliary epithelium migrates from the tissue explant. Four arbitrary, but progressive stages of dispersion were defined and used to monitor this redistribution process. Ciliaiy beat frequency, coordination, and dispersion were assessed for 91 hrs in untreated (control) and treated cultures. When compared to controls, cilia dispersed more rapidly and ciliary coordination decreased markedly in cultures treated with Colcemid (2 mM). Correlative LM/EM was used to assess whether these effects of Colcemid were coupled to ultrastructural changes. Living cells were defined as having coordinated or uncoordinated cilia and then were processed for transmission EM.


Sign in / Sign up

Export Citation Format

Share Document