Post-Golgi biosynthetic trafficking

1997 ◽  
Vol 110 (24) ◽  
pp. 3001-3009 ◽  
Author(s):  
P. Keller ◽  
K. Simons

Eukaryotic cells have developed complex machineries to distribute proteins and lipids from the Golgi complex. Contrary to what has originally been postulated, delivery of proteins to the cell surface is not a simple bulk flow process but involves sorting into distinct pathways from the trans-Golgi network. Here we describe the various routes emerging from the trans-Golgi network in different cell types, and we discuss the mechanisms that mediate sorting into these pathways. While much remains to be learned about these sorting mechanisms, it is apparent that a number of pathways previously believed to be restricted to certain cell types might be used more commonly.

2013 ◽  
Vol 202 (2) ◽  
pp. 241-250 ◽  
Author(s):  
Yuichi Wakana ◽  
Julien Villeneuve ◽  
Josse van Galen ◽  
David Cruz-Garcia ◽  
Mitsuo Tagaya ◽  
...  

Here we report that the kinesin-5 motor Klp61F, which is known for its role in bipolar spindle formation in mitosis, is required for protein transport from the Golgi complex to the cell surface in Drosophila S2 cells. Disrupting the function of its mammalian orthologue, Eg5, in HeLa cells inhibited secretion of a protein called pancreatic adenocarcinoma up-regulated factor (PAUF) but, surprisingly, not the trafficking of vesicular stomatitis virus G protein (VSV-G) to the cell surface. We have previously reported that PAUF is transported from the trans-Golgi network (TGN) to the cell surface in specific carriers called CARTS that exclude VSV-G. Inhibition of Eg5 function did not affect the biogenesis of CARTS; however, their migration was delayed and they accumulated near the Golgi complex. Altogether, our findings reveal a surprising new role of Eg5 in nonmitotic cells in the facilitation of the transport of specific carriers, CARTS, from the TGN to the cell surface.


1992 ◽  
Vol 119 (2) ◽  
pp. 273-285 ◽  
Author(s):  
S A Wood ◽  
W J Brown

Brefeldin A (BFA) induces the formation of an extensively fused network of membranes derived from the trans-Golgi network (TGN) and early endosomes (EE). We describe in detail here the unaffected passage of endocytosed material through the fused TGN/EE compartments to lysosomes in BFA-treated cells. We also confirmed that BFA caused the formation of tubular lysosomes, although the kinetics and extent of tubulation varied greatly between different cell types. The BFA-induced tubular lysosomes were often seen to form simple networks. Formation of tubular lysosomes was microtubule-mediated and energy-dependent; interestingly, however, maintenance of the tubulated lysosomes only required microtubules and was insensitive to energy poisons. Upon removal of BFA, the tubular lysosomes rapidly recovered in an energy-dependent process. In most cell types examined, the extensive TGN/EE network is ephemeral, eventually collapsing into a compact cluster of tubulo-vesicular membranes in a process that precedes the formation of tubular lysosomes. However, in primary bovine testicular cells, the BFA-induced TGN/EE network was remarkably stable (for > 12 h). During this time, the TGN/EE network coexisted with tubular lysosomes, however, the two compartments remained completely separate. These results show that BFA has multiple, profound effects on the morphology of various compartments of the endosome-lysosome system. In spite of these changes, endocytic traffic can continue through the altered compartments suggesting that transport occurs through noncoated vesicles or through vesicles that are insensitive to BFA.


2015 ◽  
Vol 26 (24) ◽  
pp. 4401-4411 ◽  
Author(s):  
Glen A. Farr ◽  
Michael Hull ◽  
Emily H. Stoops ◽  
Rosalie Bateson ◽  
Michael J. Caplan

Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking.


2007 ◽  
Vol 120 (6) ◽  
pp. 1028-1041 ◽  
Author(s):  
T. H. T. Tran ◽  
Q. Zeng ◽  
W. Hong

2003 ◽  
Vol 14 (3) ◽  
pp. 973-986 ◽  
Author(s):  
Annette M. Shewan ◽  
Ellen M. van Dam ◽  
Sally Martin ◽  
Tang Bor Luen ◽  
Wanjin Hong ◽  
...  

Insulin stimulates glucose transport in fat and muscle cells by triggering exocytosis of the glucose transporter GLUT4. To define the intracellular trafficking of GLUT4, we have studied the internalization of an epitope-tagged version of GLUT4 from the cell surface. GLUT4 rapidly traversed the endosomal system en route to a perinuclear location. This perinuclear GLUT4 compartment did not colocalize with endosomal markers (endosomal antigen 1 protein, transferrin) or TGN38, but showed significant overlap with the TGN target (t)-solubleN-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Syntaxins 6 and 16. These results were confirmed by vesicle immunoisolation. Consistent with a role for Syntaxins 6 and 16 in GLUT4 trafficking we found that their expression was up-regulated significantly during adipocyte differentiation and insulin stimulated their movement to the cell surface. GLUT4 trafficking between endosomes and trans-Golgi network was regulated via an acidic targeting motif in the carboxy terminus of GLUT4, because a mutant lacking this motif was retained in endosomes. We conclude that GLUT4 is rapidly transported from the cell surface to a subdomain of thetrans-Golgi network that is enriched in the t-SNAREs Syntaxins 6 and 16 and that an acidic targeting motif in the C-terminal tail of GLUT4 plays an important role in this process.


1995 ◽  
Vol 270 (15) ◽  
pp. 8815-8821 ◽  
Author(s):  
Jacomine Krijnse Locker ◽  
Dirk-Jan E. Opstelten ◽  
Maria Ericsson ◽  
Marian C. Horzinek ◽  
Peter J. M. Rottier

1998 ◽  
Vol 111 (23) ◽  
pp. 3451-3458 ◽  
Author(s):  
G. Banting ◽  
R. Maile ◽  
E.P. Roquemore

It has been shown previously that whilst the rat type I integral membrane protein TGN38 (ratTGN38) is predominantly localised to the trans-Golgi network this protein does reach the cell surface from where it is internalised and delivered back to the trans-Golgi network. This protein thus provides a suitable tool for the investigation of trafficking pathways between the trans-Golgi network and the cell surface and back again. The human orthologue of ratTGN38, humTGN46, behaves in a similar fashion. These proteins are internalised from the cell surface via clathrin mediated endocytosis, a process which is dependent upon the GTPase activity of dynamin. We thus reasoned that humTGN46 would accumulate at the surface of cells rendered defective in clathrin mediated endocytosis by virtue of the fact that they express a GTPase defective mutant of dynamin I. It did not. In fact, expression of a dominant negative GTPase defective mutant of dynamin I had no detectable effect on the steady state distribution of humTGN46. One explanation for this observation is that humTGN46 does not travel directly to the cell surface from the trans-Golgi network. Further studies on cells expressing the dominant negative GTPase defective mutant of dynamin I indicate that the major recycling pathway for humTGN46 is in fact between the trans-Golgi network and the early endosome.


1995 ◽  
Vol 15 (3) ◽  
pp. 1797-1807 ◽  
Author(s):  
BD Trapp ◽  
GJ Kidd ◽  
P Hauer ◽  
E Mulrenin ◽  
CA Haney ◽  
...  

1999 ◽  
Vol 67 (12) ◽  
pp. 6698-6701 ◽  
Author(s):  
Philippe Gilot ◽  
Paul André ◽  
Jean Content

ABSTRACT Listeria monocytogenes is a gram-positive, nonsporulating, food-borne pathogen of humans and animals that is able to invade many eukaryotic cells. Several listerial surface components have been reported to interact with eukaryotic cell receptors, but the complete mechanism by which the bacteria interact with all of these cell types remains largely unknown. In this work, we found thatL. monocytogenes binds to human fibronectin, a 450,000-Da dimeric glycoprotein found in body fluids, on the surface of cells and in an insoluble component of the extracellular matrix. The binding of fibronectin to L. monocytogenes was found to be saturable and dependent on proteinaceous receptors. Five fibronectin-binding proteins of 55.3, 48.6, 46.7, 42.4, and 26.8 kDa were identified. The 55.3-kDa protein was proved to be present at the bacterial cell surface. The binding of L. monocytogenes to fibronectin adds to the number of molecules to which the bacterium is able to adhere and emphasizes the complexity of host-pathogen interactions.


Sign in / Sign up

Export Citation Format

Share Document