Subcellular localization of myosin V in nerve growth cones and outgrowth from dilute-lethal neurons

1997 ◽  
Vol 110 (4) ◽  
pp. 439-449 ◽  
Author(s):  
L.L. Evans ◽  
J. Hammer ◽  
P.C. Bridgman

Myosin V-null mice (dilute-lethal mutants) exhibit apparent neurological defects that worsen from birth until death in the third postnatal week. Although myosin V is enriched in brain, the neuronal function of myosin V is unclear and the underlying cause of the neurological defects in these mice is unknown. To aide in understanding myosin V function, we examined the distribution of myosin V in the rodent superior cervical ganglion (SCG) growth cone, a well characterized neuronal structure in which myosin V is concentrated. Using affinity purified, myosin V-specific antibodies in immunofluorescence and immunoelectron microscopy, we observed that myosin V is concentrated in organelle-rich regions of the growth cone. Myosin V is present on a distinct population of small (50–100 nm) organelles, and on actin filaments and the plasma membrane. Myosin V-associated organelles are present on both microtubules and actin filaments. These results indicate that myosin V may be carried as a passenger on organelles that are transported along microtubules, and that these organelles may also be capable of movement along actin filaments. In addition, we found no abnormalities in outgrowth, morphology, or cytoskeletal organization of SCG growth cones from dilute-lethal mice. These results indicate that myosin V is not necessary for the traction force needed for growth cone locomotion, for organization of the actin cytoskeleton, or for filopodial dynamics.

1999 ◽  
Vol 146 (5) ◽  
pp. 1097-1106 ◽  
Author(s):  
Aneil Mallavarapu ◽  
Tim Mitchison

The extension and retraction of filopodia in response to extracellular cues is thought to be an important initial step that determines the direction of growth cone advance. We sought to understand how the dynamic behavior of the actin cytoskeleton is regulated to produce extension or retraction. By observing the movement of fiduciary marks on actin filaments in growth cones of a neuroblastoma cell line, we found that filopodium extension and retraction are governed by a balance between the rate of actin cytoskeleton assembly at the tip and retrograde flow. Both assembly and flow rate can vary with time in a single filopodium and between filopodia in a single growth cone. Regulation of assembly rate is the dominant factor in controlling filopodia behavior in our system.


1992 ◽  
Vol 103 (1) ◽  
pp. 233-243
Author(s):  
G. Meyerson ◽  
K.H. Pfenninger ◽  
S. Pahlman

Nerve growth cones of primary neurons are highly enriched in the proto-oncogene product pp60c-src. In order to investigate this molecule further in growing neuronal cells, growth cone and cell body fractions were prepared from human SH-SY5Y neuroblastoma cells differentiated neuronally in vitro under the influence of phorbol ester. The fractions were characterized ultrastructurally and by biochemical criteria. The neuronal (pp60c-srcN) and the fibroblastic (pp60c-src) forms of pp60src are slightly enriched and activated in the growth cones relative to the perikarya. Immunoprecipitates of pp60src from differentiated SH-SY5Y growth cones contain at least four phosphoproteins in addition to pp60src. One of these, pp38, migrates as a 100–140 kDa complex with pp60src under non-reducing conditions of gel electrophoresis. The pp38/pp60src complex is not easily detected in non-differentiated SH-SY5Y cells or perikarya of differentiated SH-SY5Y cells, but it is highly enriched in the growth cone preparation. These data suggest that growth-cone pp60src exists in a disulfide-linked oligomeric complex. The complex appears to be assembled only in the cell periphery and may be dependent upon neuronal differentiation.


2005 ◽  
Vol 25 (22) ◽  
pp. 9973-9984 ◽  
Author(s):  
Nariko Arimura ◽  
Céline Ménager ◽  
Yoji Kawano ◽  
Takeshi Yoshimura ◽  
Saeko Kawabata ◽  
...  

ABSTRACT Collapsin response mediator protein 2 (CRMP-2) enhances the advance of growth cones by regulating microtubule assembly and Numb-mediated endocytosis. We previously showed that Rho kinase phosphorylates CRMP-2 during growth cone collapse; however, the roles of phosphorylated CRMP-2 in growth cone collapse remain to be clarified. Here, we report that CRMP-2 phosphorylation by Rho kinase cancels the binding activity to the tubulin dimer, microtubules, or Numb. CRMP-2 binds to actin, but its binding is not affected by phosphorylation. Electron microscopy revealed that CRMP-2 localizes on microtubules, clathrin-coated pits, and actin filaments in dorsal root ganglion neuron growth cones, while phosphorylated CRMP-2 localizes only on actin filaments. The phosphomimic mutant of CRMP-2 has a weakened ability to enhance neurite elongation. Furthermore, ephrin-A5 induces phosphorylation of CRMP-2 via Rho kinase during growth cone collapse. Taken together, these results suggest that Rho kinase phosphorylates CRMP-2, and inactivates the ability of CRMP-2 to promote microtubule assembly and Numb-mediated endocytosis, during growth cone collapse.


2007 ◽  
Vol 178 (1) ◽  
pp. 107-119 ◽  
Author(s):  
Zhexing Wen ◽  
Liang Han ◽  
James R. Bamburg ◽  
Sangwoo Shim ◽  
Guo-li Ming ◽  
...  

Bone morphogenic proteins (BMPs) are involved in axon pathfinding, but how they guide growth cones remains elusive. In this study, we report that a BMP7 gradient elicits bidirectional turning responses from nerve growth cones by acting through LIM kinase (LIMK) and Slingshot (SSH) phosphatase to regulate actin-depolymerizing factor (ADF)/cofilin-mediated actin dynamics. Xenopus laevis growth cones from 4–8-h cultured neurons are attracted to BMP7 gradients but become repelled by BMP7 after overnight culture. The attraction and repulsion are mediated by LIMK and SSH, respectively, which oppositely regulate the phosphorylation-dependent asymmetric activity of ADF/cofilin to control the actin dynamics and growth cone steering. The attraction to repulsion switching requires the expression of a transient receptor potential (TRP) channel TRPC1 and involves Ca2+ signaling through calcineurin phosphatase for SSH activation and growth cone repulsion. Together, we show that spatial regulation of ADF/cofilin activity controls the directional responses of the growth cone to BMP7, and Ca2+ influx through TRPC tilts the LIMK-SSH balance toward SSH-mediated repulsion.


1990 ◽  
Vol 111 (5) ◽  
pp. 1949-1957 ◽  
Author(s):  
S R Heidemann ◽  
P Lamoureux ◽  
R E Buxbaum

The growth cone must push its substrate rearward via some traction force in order to propel itself forward. To determine which growth cone behaviors produce traction force, we observed chick sensory growth cones under conditions in which force production was accommodated by movement of obstacles in the environment, namely, neurites of other sensory neurons or glass fibers. The movements of these obstacles occurred via three, different, stereotyped growth cone behaviors: (a) filopodial contractions, (b) smooth rearward movement on the dorsal surface of the growth cone, and (c) interactions with ruffling lamellipodia. More than 70% of the obstacle movements were caused by filopodial contractions in which the obstacle attached at the extreme distal end of a filopodium and moved only as the filopodium changed its extension. Filopodial contractions were characterized by frequent changes of obstacle velocity and direction. Contraction of a single filopodium is estimated to exert 50-90 microdyn of force, which can account for the pull exerted by chick sensory growth cones. Importantly, all five cases of growth cones growing over the top of obstacle neurites (i.e., geometry that mimics the usual growth cone/substrate interaction), were of the filopodial contraction type. Some 25% of obstacle movements occurred by a smooth backward movement along the top surface of growth cones. Both the appearance and rate of movements were similar to that reported for retrograde flow of cortical actin near the dorsal growth cone surface. Although these retrograde flow movements also exerted enough force to account for growth cone pulling, we did not observe such movements on ventral growth cone surfaces. Occasionally obstacles were moved by interaction with ruffling lamellipodia. However, we obtained no evidence for attachment of the obstacles to ruffling lamellipodia or for directed obstacle movements by this mechanism. These data suggest that chick sensory growth cones move forward by contractile activity of filopodia, i.e., isometric contraction on a rigid substrate. Our data argue against retrograde flow of actin producing traction force.


1992 ◽  
Vol 119 (5) ◽  
pp. 1219-1243 ◽  
Author(s):  
A K Lewis ◽  
P C Bridgman

The organization and polarity of actin filaments in neuronal growth cones was studied with negative stain and freeze-etch EM using a permeabilization protocol that caused little detectable change in morphology when cultured nerve growth cones were observed by video-enhanced differential interference contrast microscopy. The lamellipodial actin cytoskeleton was composed of two distinct subpopulations: a population of 40-100-nm-wide filament bundles radiated from the leading edge, and a second population of branching short filaments filled the volume between the dorsal and ventral membrane surfaces. Together, the two populations formed the three-dimensional structural network seen within expanding lamellipodia. Interaction of the actin filaments with the ventral membrane surface occurred along the length of the filaments via membrane associated proteins. The long bundled filament population was primarily involved in these interactions. The filament tips of either population appeared to interact with the membrane only at the leading edge; this interaction was mediated by a globular Triton-insoluble material. Actin filament polarity was determined by decoration with myosin S1 or heavy meromyosin. Previous reports have suggested that the polarity of the actin filaments in motile cells is uniform, with the barbed ends toward the leading edge. We observed that the actin filament polarity within growth cone lamellipodia is not uniform; although the predominant orientation was with the barbed end toward the leading edge (47-56%), 22-25% of the filaments had the opposite orientation with their pointed ends toward the leading edge, and 19-31% ran parallel to the leading edge. The two actin filament populations display distinct polarity profiles: the longer filaments appear to be oriented predominantly with their barbed ends toward the leading edge, whereas the short filaments appear to be randomly oriented. The different length, organization and polarity of the two filament populations suggest that they differ in stability and function. The population of bundled long filaments, which appeared to be more ventrally located and in contact with membrane proteins, may be more stable than the population of short branched filaments. The location, organization, and polarity of the long bundled filaments suggest that they may be necessary for the expansion of lamellipodia and for the production of tension mediated by receptors to substrate adhesion molecules.


1999 ◽  
Vol 112 (18) ◽  
pp. 3015-3027 ◽  
Author(s):  
C. Faivre-Sarrailh ◽  
J. Falk ◽  
E. Pollerberg ◽  
M. Schachner ◽  
G. Rougon

The neuronal adhesion glycoprotein F3 is a multifunctional molecule of the immunoglobulin superfamily that displays heterophilic binding activities. In the present study, NrCAM was identified as the functional receptor mediating the inhibitory effect of F3 on axonal elongation from cerebellar granule cells. F3Fc-conjugated microspheres binding to neuronal growth cones resulted from heterophilic interaction with NrCAM but not with L1. Time-lapse video-microscopy indicated that F3Fc beads bind at the leading edge and move retrogradely to reach the base of the growth cone within a lapse of 30–60 seconds. Such velocity (5.7 microm/minute) is consistent with a coupling between F3 receptors and the retrograde flow of actin filaments. When actin filaments were disrupted by cytochalasin B, the F3Fc beads remained immobile at the leading edge. The retrograde mobility appeared to be dependent on NrCAM clustering since it was induced upon binding with cross-linked but not dimeric F3Fc chimera. These data indicate that F3 may control growth cone motility by modulating the linkage of its receptor, NrCAM, to the cytoskeleton. They provide further insights into the mechanisms by which GPI-anchored adhesion molecules may exert an inhibitory effect on axonal elongation.


1999 ◽  
Vol 10 (7) ◽  
pp. 2309-2327 ◽  
Author(s):  
M. William Rochlin ◽  
Michael E. Dailey ◽  
Paul C. Bridgman

We identify an actin-based protrusive structure in growth cones termed “intrapodium.” Unlike filopodia, intrapodia are initiated exclusively within lamellipodia and elongate in a continuous (nonsaltatory) manner parallel to the plane of the dorsal plasma membrane causing a ridge-like protrusion. Intrapodia resemble the actin-rich structures induced by intracellular pathogens (e.g.,Listeria) or by extracellular beads. Cytochalasin B inhibits intrapodial elongation and removal of cytochalasin B produced a burst of intrapodial activity. Electron microscopic studies revealed that lamellipodial intrapodia contain both short and long actin filaments oriented with their barbed ends toward the membrane surface or advancing end. Our data suggest an interaction between microtubule endings and intrapodia formation. Disruption of microtubules by acute nocodazole treatment decreased intrapodia frequency, and washout of nocodazole or addition of the microtubule-stabilizing drug Taxol caused a burst of intrapodia formation. Furthermore, individual microtubule ends were found near intrapodia initiation sites. Thus, microtubule ends or associated structures may regulate these actin-dependent structures. We propose that intrapodia are the consequence of an early step in a cascade of events that leads to the development of F-actin-associated plasma membrane specializations.


2007 ◽  
Vol 58 ◽  
pp. S204
Author(s):  
Masumi Iketani ◽  
Chihiro Imaizumi ◽  
Andreas Jeromin ◽  
Fumio Nakamura ◽  
Katsuhiko Mikoshiba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document