neuronal adhesion
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 5)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sebnem Ece Eksi ◽  
Alex Chitsazan ◽  
Zeynep Sayar ◽  
George V. Thomas ◽  
Andrew J. Fields ◽  
...  

AbstractIdentifying precise molecular subtypes attributable to specific stages of localized prostate cancer has proven difficult due to high levels of heterogeneity. Bulk assays represent a population-average, which mask the heterogeneity that exists at the single-cell level. In this work, we sequence the accessible chromatin regions of 14,424 single-cells from 18 flash-frozen prostate tumours. We observe shared chromatin features among low-grade prostate cancer cells are lost in high-grade tumours. Despite this loss, high-grade tumours exhibit an enrichment for FOXA1, HOXB13 and CDX2 transcription factor binding sites, indicating a shared trans-regulatory programme. We identify two unique genes encoding neuronal adhesion molecules that are highly accessible in high-grade prostate tumours. We show NRXN1 and NLGN1 expression in epithelial, endothelial, immune and neuronal cells in prostate cancer using cyclic immunofluorescence. Our results provide a deeper understanding of the active gene regulatory networks in primary prostate tumours, critical for molecular stratification of the disease.


2021 ◽  
Vol 22 (23) ◽  
pp. 12726
Author(s):  
Gaspard Gerschenfeld ◽  
Rachida Aid ◽  
Teresa Simon-Yarza ◽  
Soraya Lanouar ◽  
Patrick Charnay ◽  
...  

Central nervous system (CNS) lesions are a leading cause of death and disability worldwide. Three-dimensional neural cultures in biomaterials offer more physiologically relevant models for disease studies, toxicity screenings or in vivo transplantations. Herein, we describe the development and use of pullulan/dextran polysaccharide-based scaffolds for 3D neuronal culture. We first assessed scaffolding properties upon variation of the concentration (1%, 1.5%, 3% w/w) of the cross-linking agent, sodium trimetaphosphate (STMP). The lower STMP concentration (1%) allowed us to generate scaffolds with higher porosity (59.9 ± 4.6%), faster degradation rate (5.11 ± 0.14 mg/min) and lower elastic modulus (384 ± 26 Pa) compared with 3% STMP scaffolds (47 ± 2.1%, 1.39 ± 0.03 mg/min, 916 ± 44 Pa, respectively). Using primary cultures of embryonic neurons from PGKCre, Rosa26tdTomato embryos, we observed that in 3D culture, embryonic neurons remained in aggregates within the scaffolds and did not attach, spread or differentiate. To enhance neuronal adhesion and neurite outgrowth, we then functionalized the 1% STMP scaffolds with laminin. We found that treatment of the scaffold with a 100 μg/mL solution of laminin, combined with a subsequent freeze-drying step, created a laminin mesh network that significantly enhanced embryonic neuron adhesion, neurite outgrowth and survival. Such scaffold therefore constitutes a promising neuron-compatible and biodegradable biomaterial.


2021 ◽  
Vol 8 ◽  
Author(s):  
James M Dugan ◽  
Carles Colominas ◽  
Andrés-Amador Garcia-Granada ◽  
Frederik Claeyssens

This study reports a route to spatial control of neuronal adhesion onto Diamond-Like Carbon (DLC) by surface functionalisation by poly (oligo-ethyleneglycol methacrylate) (pOEGMA) and consequent laser ablation to produce cell adhesive tracks. DLC can be deposited as a tough and low friction coating on implantable devices and surgical instruments and has favourable properties for use as a biomaterial. The pOEGMA surface coating renders the DLC surface antifouling and the laser ablation creates graphitised tracks on the surface. The surfaces were coated with laminin, which adhered preferentially to the ablation tracks. The patterned surfaces were investigated for neuronal cell growth with NG108-15 cells for short term culture and rat neural stem cells for longer term culture. The cells initially adhered highly selectively to the ablation tracks while longer term cell culture revealed a more uniform cell coverage of the surface.


2021 ◽  
Vol 7 (27) ◽  
pp. eabf1973
Author(s):  
Ekaterina Epifanova ◽  
Valentina Salina ◽  
Denis Lajkó ◽  
Kathrin Textoris-Taube ◽  
Thomas Naumann ◽  
...  

The neocortex is stereotypically organized into layers of excitatory neurons arranged in a precise parallel orientation. Here we show that dynamic adhesion both preceding and following radial migration is essential for this organization. Neuronal adhesion is regulated by the Mowat-Wilson syndrome-associated transcription factor Zeb2 (Sip1/Zfhx1b) through direct repression of independent adhesion pathways controlled by Neuropilin-1 (Nrp1) and Cadherin-6 (Cdh6). We reveal that to initiate radial migration, neurons must first suppress adhesion to the extracellular matrix. Zeb2 regulates the multipolar stage by transcriptional repression of Nrp1 and thereby downstream inhibition of integrin signaling. Upon completion of migration, neurons undergo an orientation process that is independent of migration. The parallel organization of neurons within the neocortex is controlled by Cdh6 through atypical regulation of integrin signaling via its RGD motif. Our data shed light on the mechanisms that regulate initiation of radial migration and the postmigratory orientation of neurons during neocortical development.


2018 ◽  
Author(s):  
Daniel Medina-Cano ◽  
Ekin Ucuncu ◽  
Lam Son Nguyen ◽  
Michael Nicouleau ◽  
Joanna Lipecka ◽  
...  

Nanoscale ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 5295-5301 ◽  
Author(s):  
Ranjita Ghosh Moulick ◽  
Gregor Panaitov ◽  
Liping Du ◽  
Dirk Mayer ◽  
Andreas Offenhäusser

Here we have fractionated synthetic membranes using metal nano-grid structures where EphrinA5 (EA5), a neuronal adhesion promoter, was anchored via its Fc domain.


2017 ◽  
Author(s):  
Sudeep Karki ◽  
Prodeep Paudel ◽  
Celeste Sele ◽  
Alexander V. Shkumatov ◽  
Tommi Kajander

ABSTRACTSynaptic adhesion molecules play a crucial role in the regulation of synapse development and maintenance. Recently several families of leucine rich repeat domain containing neuronal adhesion molecules have been characterized, including netrin G-ligands, LRRTMs, and the SALM family proteins. Most of these are expressed at the excitatory glutamatergic synapses, and dysfunctions of these genes are genetically linked with cognitive disorders, such as autism spectrum disorders and schizophrenia. The SALM family proteins SALM3 and SALM5, similar to SLITRKs, have been shown to bind to the presynaptic receptor protein tyrosine phosphatase (RPTP) family ligands. Here we present the 3 Å crystal structure of the SALM5 LRR-Ig domain construct, and biophysical studies that verify the crystallographic results. We show that both SALM3 and SALM5 extracellular domains form similar dimeric structures, in which the LRR domains form the dimer interface. Both proteins bind to the RPTP lg-domains with micromolar affinity. SALM3 shows a clear preference for RPTP-ligands with the meB splice insert. This is in accordance with previous results showing that the LRR domain is also required for the ligand binding. Our structural studies and sequence conservation analysis suggests a ligand binding site and mechanism for RPTP binding via the dimeric LRR domain region.


2017 ◽  
Vol 114 (8) ◽  
pp. 2048-2053 ◽  
Author(s):  
Yuki Matsunaga ◽  
Mariko Noda ◽  
Hideki Murakawa ◽  
Kanehiro Hayashi ◽  
Arata Nagasaka ◽  
...  

Reelin is an essential glycoprotein for the establishment of the highly organized six-layered structure of neurons of the mammalian neocortex. Although the role of Reelin in the control of neuronal migration has been extensively studied at the molecular level, the mechanisms underlying Reelin-dependent neuronal layer organization are not yet fully understood. In this study, we directly showed that Reelin promotes adhesion among dissociated neocortical neurons in culture. The Reelin-mediated neuronal aggregation occurs in an N-cadherin–dependent manner, both in vivo and in vitro. Unexpectedly, however, in a rotation culture of dissociated neocortical cells that gradually reaggregated over time, we found that it was the neural progenitor cells [radial glial cells (RGCs)], rather than the neurons, that tended to form clusters in the presence of Reelin. Mathematical modeling suggested that this clustering of RGCs could be recapitulated if the Reelin-dependent promotion of neuronal adhesion were to occur only transiently. Thus, we directly measured the adhesive force between neurons and N-cadherin by atomic force microscopy, and found that Reelin indeed enhanced the adhesiveness of neurons to N-cadherin; this enhanced adhesiveness began to be observed at 30 min after Reelin stimulation, but declined by 3 h. These results suggest that Reelin transiently (and not persistently) promotes N-cadherin–mediated neuronal aggregation. When N-cadherin and stabilized β-catenin were overexpressed in the migrating neurons, the transfected neurons were abnormally distributed in the superficial region of the neocortex, suggesting that appropriate regulation of N-cadherin–mediated adhesion is important for correct positioning of the neurons during neocortical development.


Sign in / Sign up

Export Citation Format

Share Document