Disruption of Dictyostelium PI3K genes reduces [32P]phosphatidylinositol 3,4 bisphosphate and [32P]phosphatidylinositol trisphosphate levels, alters F-actin distribution and impairs pinocytosis

1998 ◽  
Vol 111 (2) ◽  
pp. 283-294 ◽  
Author(s):  
K. Zhou ◽  
S. Pandol ◽  
G. Bokoch ◽  
A.E. Traynor-Kaplan

To understand how phosphatidylinositol 3-kinase (PI3K) modulates cell structure and function, we examined the molecular and cellular defects of a Dictyostelium mutant strain (pik1(Delta)2(Delta)) missing two (DdPIK1 and 2) of three PI3K genes, which are homologues of the mammalian p110 subunit. Levels of [32P]phosphatidylinositol 3, 4 bisphosphate (PI(3,4)P2) and [32P]phosphatidylinositol trisphosphate (PIP3) were reduced in pik1(Delta)2(Delta), which had major defects in morphological and functional correlates of macropinocytosis. This was accompanied by dramatic deficits in a subset of F-actin-enriched structures such as circular ruffles, actin crowns and pseudopodia. Although pik1(Delta)2(Delta) were mobile, they failed to aggregate into streams. Therefore we conclude that PIK1 and 2, possibly through modulation of the levels of PIP3 and PI(3,4)P2, regulate the organization of actin filaments necessary for circular ruffling during macropinocytosis, the extension of pseudopodia and the aggregation of cells into streams, but not the regulation of cell motility.

2005 ◽  
Vol 16 (3) ◽  
pp. 1082-1094 ◽  
Author(s):  
Sonali P. Barwe ◽  
Gopalakrishnapillai Anilkumar ◽  
Sun Y. Moon ◽  
Yi Zheng ◽  
Julian P. Whitelegge ◽  
...  

The Na,K-ATPase, consisting of α- and β-subunits, regulates intracellular ion homeostasis. Recent studies have demonstrated that Na,K-ATPase also regulates epithelial cell tight junction structure and functions. Consistent with an important role in the regulation of epithelial cell structure, both Na,K-ATPase enzyme activity and subunit levels are altered in carcinoma. Previously, we have shown that repletion of Na,K-ATPase β1-subunit (Na,K-β) in highly motile Moloney sarcoma virus-transformed Madin-Darby canine kidney (MSV-MDCK) cells suppressed their motility. However, until now, the mechanism by which Na,K-β reduces cell motility remained elusive. Here, we demonstrate that Na,K-β localizes to lamellipodia and suppresses cell motility by a novel signaling mechanism involving a cross-talk between Na,K-ATPase α1-subunit (Na,K-α) and Na,K-β with proteins involved in phosphatidylinositol 3-kinase (PI3-kinase) signaling pathway. We show that Na,K-α associates with the regulatory subunit of PI3-kinase and Na,K-β binds to annexin II. These molecular interactions locally activate PI3-kinase at the lamellipodia and suppress cell motility in MSV-MDCK cells, independent of Na,K-ATPase ion transport activity. Thus, these results demonstrate a new role for Na,K-ATPase in regulating carcinoma cell motility.


Author(s):  
Nugroho Budhiwaluyo ◽  
Rayandra Asyhar ◽  
Bambang Hariyadi

  This research aims to produce a final product in the form of a performance-assessment instrument on Cell Structure and Function experiment. The development model is ADDIE. Based on expert's judgment, the instrument was valid and can be tested in the field. Field-test results shown that the product performs high validity and reliability value on measuring student performance on Cell Structure and Function experiment. Therefore, it is concluded that this performance-assessment instrument theoretically and practically has a good quality for measuring student performance in both process and product performance on Cell Structure and Function experiment. Keywords: Development, Performance-Assessment Instrument, Cell Structure and Function Experiment 


Gene Therapy ◽  
2021 ◽  
Author(s):  
Shagana Visuvanathan ◽  
Adam N. Baker ◽  
Pamela S. Lagali ◽  
Stuart G. Coupland ◽  
Garfield Miller ◽  
...  

Author(s):  
Supriya Mahajan ◽  
Alexander Jacob ◽  
Anju Kelkar ◽  
Anthony Chang ◽  
Daniel Mcskimming ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document