Alpha-COP can discriminate between distinct, functional di-lysine signals in vitro and regulates access into retrograde transport

1998 ◽  
Vol 111 (23) ◽  
pp. 3459-3470 ◽  
Author(s):  
S. Schroder-Kohne ◽  
F. Letourneur ◽  
H. Riezman

Emp47p is a yeast Golgi transmembrane protein with a retrograde, Golgi to ER transport di-lysine signal in its cytoplasmic tail. Emp47p has previously been shown to recycle between the Golgi complex and the ER and to require its di-lysine signal for Golgi localization. In contrast to other proteins with di-lysine signals, the Golgi-localization of Emp47p has been shown to be preserved in ret1-1 cells expressing a mutant alpha-COP subunit of coatomer. Here we demonstrate by sucrose gradient fractionation and immunofluorescence analysis that recycling of Emp47p was unimpaired in ret1-1. Furthermore we have characterized three new alleles of ret1 and showed that Golgi localization of Emp47p was intact in cells with those mutant alleles. We could correlate the ongoing recycling of Emp47p in ret1-1 with preserved in vitro binding of coatomer from ret1-1 cells to immobilized GST-Emp47p-tail fusion protein. As previously reported, the di-lysine signal of Wbp1p was not recognized by ret1-1 mutant coatomer, suggesting a possible role for alpha-COP in the differential binding to distinct di-lysine signals. In contrast to results with alpha-COP mutants, we found that Emp47p was mislocalised to the vacuole in mutants affecting beta'-, gamma-, delta-, and zeta-COP subunits of coatomer and that the mutant coatomer bound neither to the Emp47p nor to the Wbp1p di-lysine signal in vitro. Therefore, the retrograde transport of Emp47p displayed a differential requirement for individual coatomer subunits and a special role of alpha-COP for a particular transport step in vivo.

1998 ◽  
Vol 141 (4) ◽  
pp. 849-862 ◽  
Author(s):  
Denis Dujardin ◽  
U. Irene Wacker ◽  
Anne Moreau ◽  
Trina A. Schroer ◽  
Janet E. Rickard ◽  
...  

CLIPs (cytoplasmic linker proteins) are a class of proteins believed to mediate the initial, static interaction of organelles with microtubules. CLIP-170, the CLIP best characterized to date, is required for in vitro binding of endocytic transport vesicles to microtubules. We report here that CLIP-170 transiently associates with prometaphase chromosome kinetochores and codistributes with dynein and dynactin at kinetochores, but not polar regions, during mitosis. Like dynein and dynactin, a fraction of the total CLIP-170 pool can be detected on kinetochores of unattached chromosomes but not on those that have become aligned at the metaphase plate. The COOH-terminal domain of CLIP-170, when transiently overexpressed, localizes to kinetochores and causes endogenous full-length CLIP-170 to be lost from the kinetochores, resulting in a delay in prometaphase. Overexpression of the dynactin subunit, dynamitin, strongly reduces the amount of CLIP-170 at kinetochores suggesting that CLIP-170 targeting may involve the dynein/dynactin complex. Thus, CLIP-170 may be a linker for cargo in mitosis as well as interphase. However, dynein and dynactin staining at kinetochores are unaffected by this treatment and further overexpression studies indicate that neither CLIP-170 nor dynein and dynactin are required for the formation of kinetochore fibers. Nevertheless, these results strongly suggest that CLIP-170 contributes in some way to kinetochore function in vivo.


2001 ◽  
Vol 12 (12) ◽  
pp. 3864-3874 ◽  
Author(s):  
Sourav Ghosh ◽  
John V. Cox

Chicken erythroid ankyrin undergoes a fairly rapid cycle of cytoskeletal association, dissociation, and turnover. In addition, the cytoskeletal association of ankyrin is regulated by phosphorylation. Treatment of erythroid cells with serine and threonine phosphatase inhibitors stimulated the hyperphosphorylation of the 225- and 205-kDa ankyrin isoforms, and dissociated the bulk of these isoforms from cytoskeletal spectrin. In vitro binding studies have shown that this dissociation of ankyrin from spectrin in vivo can be attributed to a reduced ability of hyperphosphorylated ankyrin to bind spectrin. Interestingly, a significant fraction of detergent insoluble ankyrin accumulates in a spectrin-independent pool. At least some of this spectrin-independent pool of ankyrin is complexed with the AE1 anion exchanger, and the solubility properties of this pool are also regulated by phosphorylation. Treatment of cells with serine and threonine phosphatase inhibitors had no effect on ankyrin/AE1 complex formation. However, these inhibitors were sufficient to shift ankyrin/AE1 complexes from the detergent insoluble to the soluble pool. These analyses, which are the first to document the in vivo consequences of ankyrin phosphorylation, indicate that erythroid ankyrin-containing complexes can undergo dynamic rearrangements in response to changes in phosphorylation.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Yan ◽  
Ying Jiang ◽  
Jianfeng Lu ◽  
Jianhui Wu ◽  
Mingfang Zhang

Interferon-induced transmembrane protein 1 (IFITM1), a 17-kDa membrane protein, is generally known as a modulator in many cellular functions. Recent studies showed overexpression of IFITM1 in cancers and relationship between IFITM1 overexpression and tumor progression. However, the role of IFITM1 in lung cancer remains unclear. Here, we presented the overexpression of IFITM1 in lung cancer tissues and cell lines A549 and H460 using quantitative Real-Time RT-PCR.In vitroassay indicated IFITM1 silencing inhibited lung cancer cell proliferation, migration, and invasion. Further,in vivoassay showed that IFITM1 silencing markedly suppressed cell growth and metastasis of lung cancer in tumor-bearing BALB/c nude mice. Mechanistically, we found that IFITM1 silencing significantly alleviated the protein levels ofβ-catenin, cyclin D1, and c-Mycin lung cancer cells and tumor samples. Taken together, our study revealed the role of IFITM1 as a tumor promoter during lung cancer development and the possible molecular mechanism.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
HM Lee ◽  
TG Ahn ◽  
CW Kim ◽  
HJ An
Keyword(s):  

1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


1999 ◽  
Vol 38 (04) ◽  
pp. 115-119
Author(s):  
N. Oriuchi ◽  
S. Sugiyama ◽  
M. Kuroki ◽  
Y. Matsuoka ◽  
S. Tanada ◽  
...  

Summary Aim: The purpose of this study was to assess the potential for radioimmunodetection (RAID) of murine anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb) F33-104 labeled with technetium-99m (99m-Tc) by a reduction-mediated labeling method. Methods: The binding capacity of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA by means of in vitro procedures such as immunoradiometric assay and cell binding assay and the biodistribution of 99m-Tc-labeled anti-CEA MAb F33-104 in normal nude mice and nude mice bearing human colon adenocarcinoma LS180 tumor were investigated and compared with 99m-Tc-labeled anti-CEA MAb BW431/26. Results: The in vitro binding rate of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA in solution and attached to the cell membrane was significantly higher than 99m-Tclabeled anti-CEA MAb BW431/261 (31.4 ± 0.95% vs. 11.9 ± 0.55% at 100 ng/mL of soluble CEA, 83.5 ± 2.84% vs. 54.0 ± 2.54% at 107 of LS 180 cells). In vivo, accumulation of 99m-Tc-labeled anti-CEA MAb F33-104 was higher at 18 h postinjection than 99m-Tc-labeled anti-CEA MAb BW431/26 (20.1 ± 3.50% ID/g vs. 14.4 ± 3.30% ID/g). 99m-Tcactivity in the kidneys of nude mice bearing tumor was higher at 18 h postinjection than at 3 h (12.8 ± 2.10% ID/g vs. 8.01 ± 2.40% ID/g of 99m-Tc-labeled anti-CEA MAb F33-104, 10.7 ± 1.70% ID/g vs. 8.10 ± 1.75% ID/g of 99m-Tc-labeled anti-CEA MAb BW431/26). Conclusion: 99m-Tc-labeled anti-CEA MAb F33-104 is a potential novel agent for RAID of recurrent colorectal cancer.


1971 ◽  
Vol 66 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Gerald Burke

ABSTRACT A long-acting thyroid stimulator (LATS), distinct from pituitary thyrotrophin (TSH), is found in the serum of some patients with Graves' disease. Despite the marked physico-chemical and immunologic differences between the two stimulators, both in vivo and in vitro studies indicate that LATS and TSH act on the same thyroidal site(s) and that such stimulation does not require penetration of the thyroid cell. Although resorption of colloid and secretion of thyroid hormone are early responses to both TSH and LATS, available evidence reveals no basic metabolic pathway which must be activated by these hormones in order for iodination reactions to occur. Cyclic 3′, 5′-AMP appears to mediate TSH and LATS effects on iodination reactions but the role of this compound in activating thyroidal intermediary metabolism is less clear. Based on the evidence reviewed herein, it is suggested that the primary site of action of thyroid stimulators is at the cell membrane and that beyond the(se) primary control site(s), there exists a multifaceted regulatory system for thyroid hormonogenesis and cell growth.


Sign in / Sign up

Export Citation Format

Share Document