The distribution and translocation of the G protein ADP-ribosylation factor 1 in live cells is determined by its GTPase activity

1998 ◽  
Vol 111 (9) ◽  
pp. 1277-1285 ◽  
Author(s):  
C. Vasudevan ◽  
W. Han ◽  
Y. Tan ◽  
Y. Nie ◽  
D. Li ◽  
...  

ADP-ribosylation factors (ARF) are small G proteins that play key roles in vesicular transport processes. We have studied the distribution of ARF1 in live cells using chimeras of ARF1 mutants (wild type (wt) ARF1; Q71L-ARF1 (reduced GTPase); T31N (low affinity for GTP); and (Delta)Nwt (deletion of amino acids 2–18)) with green fluorescent protein (GFP). Confocal microscopy studies showed that the wt and Q71L proteins were localized in the Golgi and cytoplasm. The (Delta)Nwt and the T31N mutants were exclusively cytoplasmic. The behavior of the wt and Q71L proteins was studied in detail. About 15% of wt-ARF1-GFP was bound to the Golgi. Bound wt-ARF1-GFP dissociated rapidly after addition of Brefeldin A (BFA). This process did not appear to be a consequence of BFA-induced disappearance of the Golgi. Photobleaching recovery showed that essentially all the ARF-GFP was mobile, although it diffused very slowly. In contrast, about 40–50% of the Q71L mutant was found in the Golgi, and its rate of dissociation in the presence of BFA was slow and biphasic. Q71L-ARF1-GFP diffused more slowly than the wt. We conclude that ARF1 proteins exist in a dynamic equilibrium between Golgi-bound and cytosolic pools, and that the translocation of ARF in live cells requires the hydrolysis of GTP by the Golgi-bound protein.

2008 ◽  
Vol 19 (8) ◽  
pp. 3488-3500 ◽  
Author(s):  
Justin Chun ◽  
Zoya Shapovalova ◽  
Selma Y. Dejgaard ◽  
John F. Presley ◽  
Paul Melançon

Despite extensive work on ADP-ribosylation factor (Arf) 1 at the Golgi complex, the functions of Arf2–5 in the secretory pathway, or for that of any Arf at the ER-Golgi intermediate compartment (ERGIC) remain uncharacterized. Here, we examined the recruitment of fluorescently tagged Arf1, -3, -4, and -5 onto peripheral ERGIC. Live cell imaging detected Arfs on peripheral puncta that also contained Golgi-specific brefeldin A (BFA) resistance factor (GBF) 1 and the ERGIC marker p58. Unexpectedly, BFA did not promote corecruitment of Arfs with GBF1 either at the Golgi complex or the ERGIC, but it uncovered striking differences between Arf1,3 and Arf4,5. Although Arf1,3 quickly dissociated from all endomembranes after BFA addition, Arf4,5 persisted on ERGIC structures, even after redistribution of GBF1 to separate compartments. The GDP-arrested Arf4(T31N) mutant localized to the ERGIC, even with BFA and Exo1 present. In addtion, loss of Arf · GTP after treatment with Exo1 caused rapid release of all Arfs from the Golgi complex and led to GBF1 accumulation on both Golgi and ERGIC membranes. Our results demonstrate that GDP-bound Arf4,5 associate with ERGIC membranes through binding sites distinct from those responsible for GBF1 recruitment. Furthermore, they provide the first evidence that GBF1 accumulation on membranes may be caused by loss of Arf · GTP, rather than the formation of an Arf · GDP · BFA · GBF1 complex.


2002 ◽  
Vol 13 (9) ◽  
pp. 3078-3095 ◽  
Author(s):  
Annette L. Boman ◽  
Paul D. Salo ◽  
Melissa J. Hauglund ◽  
Nicole L. Strand ◽  
Shelly J. Rensink ◽  
...  

Golgi-localized γ-ear homology domain, ADP-ribosylation factor (ARF)-binding proteins (GGAs) facilitate distinct steps of post-Golgi traffic. Human and yeast GGA proteins are only ∼25% identical, but all GGA proteins have four similar domains based on function and sequence homology. GGA proteins are most conserved in the region that interacts with ARF proteins. To analyze the role of ARF in GGA protein localization and function, we performed mutational analyses of both human and yeast GGAs. To our surprise, yeast and human GGAs differ in their requirement for ARF interaction. We describe a point mutation in both yeast and mammalian GGA proteins that eliminates binding to ARFs. In mammalian cells, this mutation disrupts the localization of human GGA proteins. Yeast Gga function was studied using an assay for carboxypeptidase Y missorting and synthetic temperature-sensitive lethality between GGAs andVPS27. Based on these assays, we conclude that non-Arf-binding yeast Gga mutants can function normally in membrane trafficking. Using green fluorescent protein-tagged Gga1p, we show that Arf interaction is not required for Gga localization to the Golgi. Truncation analysis of Gga1p and Gga2p suggests that the N-terminal VHS domain and C-terminal hinge and ear domains play significant roles in yeast Gga protein localization and function. Together, our data suggest that yeast Gga proteins function to assemble a protein complex at the late Golgi to initiate proper sorting and transport of specific cargo. Whereas mammalian GGAs must interact with ARF to localize to and function at the Golgi, interaction between yeast Ggas and Arf plays a minor role in Gga localization and function.


Planta ◽  
1999 ◽  
Vol 208 (3) ◽  
pp. 392-400 ◽  
Author(s):  
Petra Boevink ◽  
Barry Martin ◽  
Karl Oparka ◽  
Simon Santa Cruz ◽  
Chris Hawes

2004 ◽  
Vol 286 (5) ◽  
pp. E704-E710 ◽  
Author(s):  
Hesham A. W. Tawfeek ◽  
Abdul B. Abou-Samra

Our previous studies demonstrated that a green fluorescent protein-tagged parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor stably expressed in LLCPK-1 cells undergoes agonist-dependent internalization into clathrin-coated pits. The subcellular localization of the internalized PTH/PTHrP receptor is not known. In the present study, we explored the intracellular pathways of the internalized PTH/PTHrP receptor. Using immunofluorescence and confocal microscopy, we show that the internalized receptors localize at a juxtanuclear compartment identified as the Golgi apparatus. The receptors do not colocalize with lysosomes. Furthermore, whereas the internalized receptors exhibit rapid recycling, treatment with proton pump inhibitors (bafilomycin-A1 and concanamycin A) or brefeldin A, Golgi disrupting agents, reduces PTH/PTHrP receptor recycling. Together, these data indicate an important role for the vacuolar-type hydrogen-ATPase and the Golgi apparatus in postendocytic PTH/PTHrP receptor recovery.


2003 ◽  
Vol 285 (5) ◽  
pp. C1091-C1100 ◽  
Author(s):  
Stephen A. Kempson ◽  
Vaibhave Parikh ◽  
Lixuan Xi ◽  
Shaoyou Chu ◽  
Marshall H. Montrose

The betaine transporter (BGT1) protects cells in the hypertonic renal inner medulla by mediating uptake and accumulation of the osmolyte betaine. Transcriptional regulation plays an essential role in upregulation of BGT1 transport when renal cells are exposed to hypertonic medium for 24 h. Posttranscriptional regulation of the BGT1 protein is largely unexplored. We have investigated the distribution of BGT1 protein in live cells after transfection with BGT1 tagged with enhanced green fluorescent protein (EGFP). Fusion of EGFP to the NH2 terminus of BGT1 produced a fusion protein (EGFP-BGT) with transport properties identical to normal BGT1, as determined by ion dependence, inhibitor sensitivity, and apparent Km for GABA. Confocal microscopy of EGFP-BGT fluorescence in transfected Madin-Darby canine kidney (MDCK) cells showed that hypertonic stress for 24 h induced a shift in subcellular distribution from cytoplasm to plasma membrane. This was confirmed by colocalization with anti-BGT1 antibody staining. In fibroblasts, transfected EGFP-BGT caused increased transport in response to hypertonic stress. The activation of transport was not accompanied by increased expression of EGFP-BGT, as determined by Western blotting. Membrane insertion of EGFP-BGT protein in MDCK cells began within 2-3 h after onset of hypertonic stress and was blocked by cycloheximide. We conclude that posttranscriptional regulation of BGT1 is essential for adaptation to hypertonic stress and that insertion of BGT1 protein to the plasma membrane may require accessory proteins.


2002 ◽  
Vol 291 (5) ◽  
pp. 1272-1275 ◽  
Author(s):  
Tong-Sheng Chen ◽  
Shao-Qun Zeng ◽  
Qing-Ming Luo ◽  
Zhi-Hong Zhang ◽  
Wei Zhou

2003 ◽  
Vol 284 (5) ◽  
pp. H1647-H1654 ◽  
Author(s):  
Jean-Philippe Fortin ◽  
Johanne Bouthillier ◽  
François Marceau

We hypothesized that the inducible kinin B1 receptor (B1R) is rapidly cleared from cells when its synthesis subsides. The agonist-independent degradation of the rabbit B1Rs and related B2 receptors (B2Rs) was investigated. Endocytosis of the B1R-yellow fluorescent protein (YFP) conjugate was more intense than that of B2R-green fluorescent protein (GFP) based on fluorescence accumulation in HEK 293 cells treated with a lysosomal inhibitor. The cells expressing B1R-YFP contained more GFP/YFP-sized degradation product(s) than those expressing B2R-GFP (immunoblot, antibodies equally reacting with both fluorescent proteins). The binding site density of B1R-YFP decreased in the presence of protein synthesis or maturation inhibitors (anisomycin, brefeldin A), whereas that of B2R-GFP remained constant. Wild-type B1Rs were also cleared faster than B2Rs in rabbit smooth muscle cells treated with metabolic inhibitors. Contractility experiments based on brefeldin A-treated isolated rabbit blood vessels also functionally support that B1Rs are more rapidly eliminated than B2Rs (decreased maximal effect of agonist over 2 h). The highly regulated B1R is rapidly degraded, relative to the constitutive B2R.


2001 ◽  
Vol 152 (1) ◽  
pp. 111-126 ◽  
Author(s):  
David Michaelson ◽  
Joseph Silletti ◽  
Gretchen Murphy ◽  
Peter D'Eustachio ◽  
Mark Rush ◽  
...  

Determinants of membrane targeting of Rho proteins were investigated in live cells with green fluorescent fusion proteins expressed with or without Rho-guanine nucleotide dissociation inhibitor (GDI)α. The hypervariable region determined to which membrane compartment each protein was targeted. Targeting was regulated by binding to RhoGDIα in the case of RhoA, Rac1, Rac2, and Cdc42hs but not RhoB or TC10. Although RhoB localized to the plasma membrane (PM), Golgi, and motile peri-Golgi vesicles, TC10 localized to PMs and endosomes. Inhibition of palmitoylation mislocalized H-Ras, RhoB, and TC10 to the endoplasmic reticulum. Although overexpressed Cdc42hs and Rac2 were observed predominantly on endomembrane, Rac1 was predominantly at the PM. RhoA was cytosolic even when expressed at levels in vast excess of RhoGDIα. Oncogenic Dbl stimulated translocation of green fluorescent protein (GFP)-Rac1, GFP-Cdc42hs, and GFP-RhoA to lamellipodia. RhoGDI binding to GFP-Cdc42hs was not affected by substituting farnesylation for geranylgeranylation. A palmitoylation site inserted into RhoA blocked RhoGDIα binding. Mutations that render RhoA, Cdc42hs, or Rac1, either constitutively active or dominant negative abrogated binding to RhoGDIα and redirected expression to both PMs and internal membranes. Thus, despite the common essential feature of the CAAX (prenylation, AAX tripeptide proteolysis, and carboxyl methylation) motif, the subcellular localizations of Rho GTPases, like their functions, are diverse and dynamic.


2005 ◽  
Vol 94 (2) ◽  
pp. 1597-1605 ◽  
Author(s):  
Kwon-Seok Chae ◽  
Kwang-Seok Oh ◽  
Stuart E. Dryer

In developing ciliary ganglion (CG) neurons, movement of functional large-conductance (BK type) Ca2+-activated K+ ( KCa) channels to the cell surface is stimulated by the endogenous growth factors TGFβ1 and β-neuregulin-1 (NRG1). Here we show that a brief NRG1 treatment (0.5–1.5 h) mobilizes KCa channels in a post-Golgi compartment, but longer treatments (>3.5 h) mobilize KCa channels located in the endoplasmic reticulum or Golgi apparatus. Specifically, the effects of 3.5 h NRG1 treatment were completely blocked by treatments that disrupt Golgi apparatus function. These include inhibition of microtubules, or inhibition of the ADP-ribosylation factor-1 (ARF1) system by brefeldin A, by over-expression of dominant-negative ARF1, or over-expression of an ARF1 GTPase-activating protein that blocks ARF1 cycling between GTP- and GDP-bound states. These treatments had no effect on stimulation of KCa evoked by 1.5 h treatment with NRG1, indicating that short-term responses to NRG1 do not require an intact Golgi apparatus. By contrast, both the acute and sustained effects of NRG1 were inhibited by treatments that block trafficking processes that occur close to the plasma membrane. Thus mobilization of KCa was blocked by treatments than inhibit ADP-ribosylation factor-6 (ARF6) signaling, including overexpression of dominant-negative ARF6, dominant-negative ARNO, or dominant-negative phospholipase D1. TGFβ1, the effects of which on KCa are much slower in onset, is unable to selectively mobilize channels in the post-Golgi pool, and its effects on KCa are completely blocked by inhibition of microtubules, Golgi function and also by plasma membrane ARF6 and phospholipase D1 signaling.


Sign in / Sign up

Export Citation Format

Share Document