A switch in the cellular localization of macrophage migration inhibitory factor in the rat testis after ethane dimethane sulfonate treatment

1999 ◽  
Vol 112 (9) ◽  
pp. 1337-1344
Author(s):  
A. Meinhardt ◽  
M. Bacher ◽  
M.K. O'Bryan ◽  
J.R. McFarlane ◽  
C. Mallidis ◽  
...  

Macrophage migration inhibitory factor (MIF), one of the first cytokines to be discovered, has recently been localized to the Leydig cells in adult rat testes. In the following study, the response of MIF to Leydig cell ablation by the Leydig cell-specific toxin ethane dimethane sulfonate (EDS) was examined in adult male rats. Testicular MIF mRNA and protein in testicular interstitial fluid measured by ELISA and western blot were only marginally reduced by EDS treatment, in spite of the fact that the Leydig cells were completely destroyed within 7 days. Immunohistochemistry using an affinity-purified anti-mouse MIF antibody localized MIF exclusively to the Leydig cells in control testes. At 7 days post-EDS treatment, there were no MIF immunopositive Leydig cells in the interstitium, although distinct MIF immunostaining was observed in the seminiferous tubules, principally in Sertoli cells and residual cytoplasm, and some spermatogonia. A few peritubular and perivascular cells were also labelled at this time, which possibly represented mesenchymal Leydig cell precursors. At 14 and 21 days, Sertoli cell MIF immunoreactivity was observed in only a few tubule cross-sections, while some peritubular and perivascular mesenchymal cells and the re-populating immature Leydig cells were intensely labeled. At 28 days after EDS-treatment, the MIF immunostaining pattern was identical to that of untreated and control testes. The switch in the compartmentalization of MIF protein at 7 days after EDS-treatment was confirmed by western blot analysis of interstitial tissue and seminiferous tubules separated by mechanical dissection. These data establish that Leydig cell-depleted testes continue to produce MIF, and suggest the existence of a mechanism of compensatory cytokine production involving the Sertoli cells. This represents the first demonstration of a hitherto unsuspected pattern of cellular interaction between the Leydig cells and the seminiferous tubules which is consistent with an essential role for MIF in male testicular function.

2016 ◽  
Vol 66 (3-4) ◽  
pp. 249-258 ◽  
Author(s):  
Alexandru F. Deftu ◽  
Paolo Fiorenzani ◽  
Ilaria Ceccarelli ◽  
Jessica Pinassi ◽  
Martina Gambaretto ◽  
...  

Cytokine proteins are involved in different signaling pathways throughout the central nervous system. To study the efficacy of an inflammatory cytokine, the macrophage migration inhibitory factor (MIF), which acts via several receptor molecules including the receptor CXCR2, male rats’ behaviors were determined after intracerebroventricular (ICV) administration of MIF. There were three treatments: One group received only the cytokine, a second group received MIF and an CXCR2 antagonist (SB265610), and a third, control group received only the carrier medium saline. All rats were subjected to a subcutaneous injection of formalin in the hind paw after the ICV administration. Pain behaviors induced after formalin injection showed increased values in the MIF group of licking in the first phase and increased values of flexing, licking and paw-jerk in the second phase. On the contrary, spontaneous behaviors induced by formalin injection changed alternatively between the two groups compared with saline. These results suggest a possible effect of cytokine MIF on central nervous processes implicated in pain modulation mediated by the receptor CXCR2.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yonglin Zhao ◽  
Xing Wei ◽  
Weimiao Li ◽  
Changyou Shan ◽  
Jinning Song ◽  
...  

Objective. We have previously demonstrated that inflammation induced by toll-like receptors (TLRs) 2/4 exert cerebral deleterious effects after diffuse axonal injury (DAI); however, the underlying mechanisms are not fully understood. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine involved in inflammatory responses. The purpose of this study was to investigate the role of MIF in inflammation induced by TLRs in the cortices of DAI rats. Methods. The rat DAI model was established by head rotational acceleration and confirmed by β-APP, HE, and silver staining. MIF protein expression at 3 h, 6 h, 12 h, 1 d, and 3 d after DAI was measured by western blot. The localization of MIF was measured by immunofluorescence. MIF antagonist ISO-1 was intracerebroventricularly injected to inhibit MIF. Neuronal and axonal injury and glial responses were assessed by TUNEL, immunohistochemistry, and TEM. Expression of TLR2, TLR4, ERK, phospho-ERK, NF-κB, and phospho-NF-κB was examined by western blot. The level of IL-1β, IL-6, and TNF-α was measured by ELISA. Results. MIF expression was significantly increased, peaking at 1 day after DAI, and MIF was mainly localized in microglial cells and neurons. ISO-1 suppressed neuronal apoptosis, axonal injury, and glial responses and decreased the expression of downstream signaling molecules related to TLR2/4, including ERK, phospho-ERK, NF-κB, phospho-NF-κB, IL-1β, IL-6, and TNF-α. Conclusion. MIF was involved in the neuronal and axonal damage through a TLR-related pathway following DAI.


2006 ◽  
Vol 175 (4S) ◽  
pp. 95-96 ◽  
Author(s):  
Pedro L. Vera ◽  
Kenneth A. lczkowski ◽  
Robert M. Moldwin ◽  
Leslie Kushner ◽  
Katherine L. Meyer-Siegler

Sign in / Sign up

Export Citation Format

Share Document