Overexpression of PAX6(5a) in lens fiber cells results in cataract and upregulation of (alpha)5(beta)1 integrin expression

2000 ◽  
Vol 113 (18) ◽  
pp. 3173-3185 ◽  
Author(s):  
M.K. Duncan ◽  
Z. Kozmik ◽  
K. Cveklova ◽  
J. Piatigorsky ◽  
A. Cvekl

The PAX6 gene, a key regulator of eye development, produces two major proteins that differ in paired domain structure: PAX6 and PAX6(5a). It is known that an increase in the PAX6(5a) to PAX6 ratio leads to multiple ocular defects in humans. Here, transgenic mice were created that overexpress human PAX6(5a) in the lens. These mice develop cataracts with abnormalities in fiber cell shape as well as fiber cell/lens capsule and fiber cell/fiber cell interactions. While the structure of the actin cytoskeleton appeared relatively normal, the cataractous lens expresses increased amounts of paxillin and p120(ctn) as well as large aggregates of (alpha)5(beta)1 integrin in the dysgenic fiber cells. The elevated amounts of these proteins in the transgenic lens correlated well with elevated levels of their respective mRNAs. To investigate the role of Pax-6(5a) in the upregulation of these genes, a series of gel shift experiments using truncated proteins and consensus oligonucleotides demonstrated the complexity of Pax-6 and Pax-6(5a) binding to DNA, aiding our identification of potential binding sites in the human (α)5- and (beta)1-integrin promoters. Consequent gel shift analysis demonstrated that these putative regulatory sequences bind Pax-6 and/or Pax-6(5a) in lens nuclear extracts, suggesting that the human (alpha)5 and (beta)1 integrin promoters contain PAX6/PAX6(5a) binding sites and maybe directly regulated by this transcription factor in the transgenic lens. We conclude that these transgenic mice are good models to study a type of human cataract and for identifying batteries of genes that are directly or indirectly regulated by both forms of Pax-6.

1991 ◽  
Vol 11 (2) ◽  
pp. 1099-1106 ◽  
Author(s):  
F P Lemaigre ◽  
S M Durviaux ◽  
G G Rousseau

The liver-type and muscle-type isozymes of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase are encoded by one gene that uses two alternative promoters. We have identified cis-acting sequences and protein-binding sites on the liver-type promoter. Transfection assays with deleted promoters showed that maximal promoter activity is contained within 360 bp upstream of the cap site. DNase I footprinting experiments with liver and spleen nuclear extracts and with purified proteins revealed several protein-binding sites in this region. These included four binding sites for nuclear factor I, one site that contains an octamer consensus but showed a liver-specific footprint pattern, two liver-specific protein-binding sites, and one poly(dG)-containing binding site. Transfection of cells of hepatic origin suggested that all these sites except one are involved in transcriptional regulation. The region between -360 and -2663 contained an element that functioned as a silencer in a nonhepatic cell line. We conclude that in liver transcription from the liver-type promoter of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene is controlled by ubiquitous and tissue-specific factors and involves activating and derepressing mechanisms.


Development ◽  
1996 ◽  
Vol 122 (2) ◽  
pp. 627-635 ◽  
Author(s):  
D.L. Song ◽  
G. Chalepakis ◽  
P. Gruss ◽  
A.L. Joyner

The temporally and spatially restricted expression of the mouse Engrailed (En) genes is essential for development of the midbrain and cerebellum. The regulation of En-2 expression was studied using in vitro protein-DNA binding assays and in vivo expression analysis in transgenic mice to gain insight into the genetic events that lead to regionalization of the developing brain. A minimum En-2 1.0 kb enhancer fragment was defined and found to contain multiple positive and negative regulatory elements that function in concert to establish the early embryonic mid-hindbrain expression. Furthermore, the mid-hindbrain regulatory sequences were shown to be structurally and functionally conserved in humans. The mouse paired-box-containing genes Pax-2, Pax-5 and Pax-8 show overlapping expression with the En genes in the developing brain. Significantly, two DNA-binding sites for Pax-2, Pax-5 and Pax-8 proteins were identified in the 1.0 kb En-2 regulatory sequences, and mutation of the binding sites disrupted initiation and maintenance of expression in transgenic mice. These results present strong molecular evidence that the Pax genes are direct upstream regulators of En-2 in the genetic cascade controlling mid-hindbrain development. These mouse studies, taken together with others in Drosophila and zebrafish on the role of Pax genes in controlling expression of En family members, indicate that a Pax-En genetic pathway has been conserved during evolution.


1990 ◽  
Vol 10 (2) ◽  
pp. 474-479
Author(s):  
M L Breitman ◽  
H Rombola ◽  
I H Maxwell ◽  
G K Klintworth ◽  
A Bernstein

We have previously generated microphthalmic mice lacking lens fiber cells by targeting the expression of the diphtheria toxin A (DT-A) gene in transgenic mice with regulatory sequences associated with the mouse gamma 2-crystallin gene. Because of the extreme toxicity of DT to animal cells and the potential leakiness of many tissue-specific regulatory regions, we investigated whether there might be an experimental advantage in using a mutant, attenuated form of the DT-A gene (tox-176) fused to gamma 2-crystallin regulatory sequences to ablate fiber cells in the ocular lens. In contrast to the microphthalmia observed in transgenic animals carrying the native DT-A gene, independent lines of mice transgenic for the gamma 2tox176 construct displayed predominantly cataracts or clinical anophthalmia. These contrasting phenotypes were transmitted within each pedigree, although for some lines some phenotypic heterogeneity among offspring was noted. The difference in phenotype between cataractous and clinically anophthalmic transgenic lines could not be ascribed to differences in the transgene copy number. Instead, the results suggest that transgene expression and hence the extent of genetic ablation are modulated by the site of chromosomal integration and, to a lesser extent, by epigenetic events. They also suggest that the attenuated gamma 2tox176 construct can integrate into chromosomal regions that are particularly favorable for expression without compromising embryological development and therefore that the tox-176 gene may be more versatile and effective than the wild-type DT-A gene for achieving genetic ablation with a broad range of cell- or tissue-specific regulatory sequences.


1990 ◽  
Vol 10 (2) ◽  
pp. 474-479 ◽  
Author(s):  
M L Breitman ◽  
H Rombola ◽  
I H Maxwell ◽  
G K Klintworth ◽  
A Bernstein

We have previously generated microphthalmic mice lacking lens fiber cells by targeting the expression of the diphtheria toxin A (DT-A) gene in transgenic mice with regulatory sequences associated with the mouse gamma 2-crystallin gene. Because of the extreme toxicity of DT to animal cells and the potential leakiness of many tissue-specific regulatory regions, we investigated whether there might be an experimental advantage in using a mutant, attenuated form of the DT-A gene (tox-176) fused to gamma 2-crystallin regulatory sequences to ablate fiber cells in the ocular lens. In contrast to the microphthalmia observed in transgenic animals carrying the native DT-A gene, independent lines of mice transgenic for the gamma 2tox176 construct displayed predominantly cataracts or clinical anophthalmia. These contrasting phenotypes were transmitted within each pedigree, although for some lines some phenotypic heterogeneity among offspring was noted. The difference in phenotype between cataractous and clinically anophthalmic transgenic lines could not be ascribed to differences in the transgene copy number. Instead, the results suggest that transgene expression and hence the extent of genetic ablation are modulated by the site of chromosomal integration and, to a lesser extent, by epigenetic events. They also suggest that the attenuated gamma 2tox176 construct can integrate into chromosomal regions that are particularly favorable for expression without compromising embryological development and therefore that the tox-176 gene may be more versatile and effective than the wild-type DT-A gene for achieving genetic ablation with a broad range of cell- or tissue-specific regulatory sequences.


1991 ◽  
Vol 11 (2) ◽  
pp. 1099-1106
Author(s):  
F P Lemaigre ◽  
S M Durviaux ◽  
G G Rousseau

The liver-type and muscle-type isozymes of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase are encoded by one gene that uses two alternative promoters. We have identified cis-acting sequences and protein-binding sites on the liver-type promoter. Transfection assays with deleted promoters showed that maximal promoter activity is contained within 360 bp upstream of the cap site. DNase I footprinting experiments with liver and spleen nuclear extracts and with purified proteins revealed several protein-binding sites in this region. These included four binding sites for nuclear factor I, one site that contains an octamer consensus but showed a liver-specific footprint pattern, two liver-specific protein-binding sites, and one poly(dG)-containing binding site. Transfection of cells of hepatic origin suggested that all these sites except one are involved in transcriptional regulation. The region between -360 and -2663 contained an element that functioned as a silencer in a nonhepatic cell line. We conclude that in liver transcription from the liver-type promoter of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene is controlled by ubiquitous and tissue-specific factors and involves activating and derepressing mechanisms.


Development ◽  
2002 ◽  
Vol 129 (15) ◽  
pp. 3727-3737 ◽  
Author(s):  
Sonya C. Faber ◽  
Michael L. Robinson ◽  
Helen P. Makarenkova ◽  
Richard A. Lang

We have investigated the role of Bmp signaling in development of the mouse lens using three experimental strategies. First, we have shown that the Bmp ligand inhibitor noggin can suppress the differentiation of primary lens fiber cells in explant culture. Second, we have expressed a dominant-negative form of the type 1 Bmp family receptor Alk6 (Bmpr1b – Mouse Genome Informatics) in the lens in transgenic mice and shown that an inhibition of primary fiber cell differentiation can be detected at E13.5. Interestingly, the observed inhibition of primary fiber cell development was asymmetrical and appeared only on the nasal side of the lens in the ventral half. Expression of the inhibitory form of Alk6 was driven either by the αA-cystallin promoter or the ectoderm enhancer from the Pax6 gene in two different transgenes. These expression units drive transgene expression in distinct patterns that overlap in the equatorial cells of the lens vesicle at E12.5. Despite the distinctions between the transgenes, they caused primary fiber cell differentiation defects that were essentially identical, which implied that the equatorial lens vesicle cells were responding to Bmp signals in permitting primary fiber cells to develop. Importantly, E12.5 equatorial lens vesicle cells showed cell-surface immunoreactivity for bone-morphogenetic protein receptor type 2 and nuclear immunoreactivity for the active, phosphorylated form of the Bmp responsive Smads. This indicated that these cells had the machinery for Bmp signaling and were responding to Bmp signals. We conclude that Bmp signaling is required for primary lens fiber cell differentiation and, given the asymmetry of the differentiation inhibition, that distinct differentiation stimuli may be active in different quadrants of the eye.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lingling DOU ◽  
Limin LV ◽  
Yangyang KANG ◽  
Ruijie TIAN ◽  
Deqing HUANG ◽  
...  

Abstract Background Calmodulin (CaM) is one of the most important Ca2+ signaling receptors because it regulates diverse physiological and biochemical reactions in plants. CaM functions by interacting with CaM-binding proteins (CaMBPs) to modulate Ca2+ signaling. IQ domain (IQD) proteins are plant-specific CaMBPs that bind to CaM by their specific CaM binding sites. Results In this study, we identified 102 GhIQD genes in the Gossypium hirsutum L. genome. The GhIQD gene family was classified into four clusters (I, II, III, and IV), and we then mapped the GhIQD genes to the G. hirsutum L. chromosomes. Moreover, we found that 100 of the 102 GhIQD genes resulted from segmental duplication events, indicating that segmental duplication is the main force driving GhIQD gene expansion. Gene expression pattern analysis showed that a total of 89 GhIQD genes expressed in the elongation stage and second cell wall biosynthesis stage of the fiber cells, suggesting that GhIQD genes may contribute to fiber cell development in cotton. In addition, we found that 20 selected GhIQD genes were highly expressed in various tissues. Exogenous application of MeJA significantly enhanced the expression levels of GhIQD genes. Conclusions Our study shows that GhIQD genes are involved in fiber cell development in cotton and are also widely induced by MeJA. Thw results provide bases to systematically characterize the evolution and biological functions of GhIQD genes, as well as clues to breed better cotton varieties in the future.


1988 ◽  
Vol 8 (4) ◽  
pp. 1821-1825
Author(s):  
K A Kelley ◽  
J W Chamberlain ◽  
J A Nolan ◽  
A L Horwich ◽  
F Kalousek ◽  
...  

In an attempt to use mouse metallothionein-I (mMT-I) regulatory sequences to direct expression of human ornithine transcarbamylase in the liver of transgenic animals, fusion genes joining either 1.6 kilobases or 185 base pairs of the mMT-I regulatory region to the human ornithine transcarbamylase protein-coding sequence were used to produce transgenic mice. In mice carrying the fusion gene with 1.6 kilobases of the mMT-I 5'-flanking sequences, transgene expression was observed in a wide range of tissues, but, unexpectedly, expression in liver was never observed. Surprisingly, in mice carrying the fusion gene regulated by only 185 base pairs of the mMT-I 5'-flanking sequences, the transgene was expressed exclusively in male germ cells during the tetraploid, pachytene stage of meiosis.


Development ◽  
1989 ◽  
Vol 106 (3) ◽  
pp. 457-463 ◽  
Author(s):  
M.L. Breitman ◽  
D.M. Bryce ◽  
E. Giddens ◽  
S. Clapoff ◽  
D. Goring ◽  
...  

Transgenic mice carrying the diphtheria toxin A gene driven by mouse gamma 2-crystallin promoter sequences manifest microphthalmia due to ablation of fiber cells in the ocular lens. Here we map ablation events in the lens by crossing animals hemizygous for the ablation construct with transgenic mice homozygous for the in situ lacZ reporter gene driven by identical gamma 2-crystallin promoter sequences. By comparing the spatial distribution of lacZ-expressing cells and the profile of gamma-crystallin gene expression in the lenses of normal and microphthalmic offspring, the contributions of specific cell types to lens development were examined. The results suggest that phenotypically and developmentally distinct populations of lens fiber cells are able to contribute to the lens nucleus during organogenesis. We also show that dosage of the transgene and its site of integration influence the extent of ablation. In those mice homozygous for the transgene and completely lacking cells of the lens lineage, we show that the sclera, cornea, and ciliary epithelium are reduced in size but, otherwise, reasonably well formed. In contrast, the anterior chamber, iris, and vitreous body are not discernible while the sensory retina is highly convoluted and extensively fills the vitreous chamber.


Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1171-1179 ◽  
Author(s):  
C.C. Zhang ◽  
J. Muller ◽  
M. Hoch ◽  
H. Jackle ◽  
M. Bienz

Boundaries of Ultrabithorax expression are mediated by long-range repression acting through the PBX or ABX control region. We show here that either of these control regions confers an early band of beta-galactosidase expression which is restricted along the anteroposterior axis of the blastoderm embryo. This band is succeeded by a stripe pattern with very similar anteroposterior limits. Dissection of the PBX control region demonstrates that the two patterns are conferred by distinct cis-regulatory sequences contained within separate PBX subfragments. We find several binding sites for hunchback protein within both PBX subfragments. Zygotic hunchback function is required to prevent ectopic PBX expression. Moreover, the PBX pattern is completely suppressed in embryos containing uniformly distributed maternal hunchback protein. Our results strongly suggest that hunchback protein directly binds to the PBX control region and acts as a repressor to specify the boundary positions of the PBX pattern.


Sign in / Sign up

Export Citation Format

Share Document