scholarly journals Fibronectin matrix assembly is essential for cell condensation during chondrogenesis

2014 ◽  
Vol 127 (20) ◽  
pp. 4420-4428 ◽  
Author(s):  
Purva Singh ◽  
Jean E. Schwarzbauer
Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2984-2990 ◽  
Author(s):  
Qinghong Zhang ◽  
Olivier Peyruchaud ◽  
Kelly J. French ◽  
Magnus K. Magnusson ◽  
Deane F. Mosher

Abstract Fibronectin matrix assembly is a cell-dependent process mediated by cell surface binding sites for the 70-kD N-terminal portion of fibronectin. We have shown that Rho-dependent cytoskeleton reorganization induced by lysophosphatidic acid (LPA) or the microtubule-disrupting agent nocodazole increases fibronectin binding (Zhang et al, Mol Biol Cell 8:1415, 1997). Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid implicated in mitogenesis and cytoskeletal remodelling. Both LPA and S1P are present in increased amounts in serum as compared with plasma as a result of platelet activation. Addition of S1P to human osteosarcoma MG63 cells or human foreskin fibroblasts increased cell-mediated binding and assembly of fibronectin. MG63 cells expressed the Edg-2 and Edg-4 G-protein–coupled receptors for bioactive lipids, whereas foreskin fibroblasts expressed Edg-2, Edg-3, and Edg-4. The stimulatory effect of S1P on the binding of fibronectin or the N-terminal 70-kD fragment of fibronectin was dynamic and due to increases in both the number and affinity of binding sites. The stimulation of 70-kD fragment binding by nanomolar S1P, like stimulation of binding by LPA or nocodazole, was blocked by inactivation of Rho with C3 exotoxin but not by pertussis toxin-mediated inactivation of Gi. These results indicate a common signal pathway leading to control of cellular fibronectin matrix assembly by bioactive lipids generated during blood coagulation.


2009 ◽  
Vol 96 (2) ◽  
pp. 729-738 ◽  
Author(s):  
Christopher A. Lemmon ◽  
Christopher S. Chen ◽  
Lewis H. Romer

Author(s):  
Vogel Sarah ◽  
Moeller Stephanie ◽  
Arnoldini Simon ◽  
Samsonov Sergey ◽  
Schnabelrauch Matthias ◽  
...  

Blood ◽  
1990 ◽  
Vol 75 (12) ◽  
pp. 2335-2342 ◽  
Author(s):  
AP Kowalczyk ◽  
RH Tulloh ◽  
PJ McKeown-Longo

Abstract Endothelial cells in vivo form the interface between the vascular and interstitial compartments and are strategically located to mediate vascular permeability and hemostasis. One mechanism endothelial cells use to maintain a nonthrombogenic surface is to polarize basement membrane constituents to the basolateral cell surface. In the present study, we began characterization of the mechanisms used by endothelial cells in the assembly of a subcellular fibronectin matrix. Immunofluorescence microscopy was used to localize extracellular matrix fibronectin in endothelial cell cultures. In contrast to preconfluent and newly confluent cultures, post-confluent cultures assembled a fibronectin matrix that was restricted to the basolateral cell surface. To determine if endothelial cells polarize fibronectin secretion, Millicell culture inserts were used to distinguish proteins secreted from apical and basal surfaces. Preconfluent and newly confluent cultures secreted fibronectin equally into apical and basal media. In contrast, post-confluent endothelial cells secreted fibronectin preferentially into the basal chamber. The degree to which fibronectin secretion was polarized varied with time in culture and with the ability of the monolayers to act as a barrier to the movement of 125I- fibronectin from the apical to basal chamber. In addition, high affinity binding sites for exogenous 125I-fibronectin were found to be present on the basolateral, but not apical, surface of post-confluent endothelial monolayers. These results indicate that subendothelial matrix assembly correlates with polarized fibronectin secretion, culture confluence, and expression of high affinity binding sites for fibronectin on the basolateral cell surface.


Blood ◽  
2014 ◽  
Vol 124 (8) ◽  
pp. 1344-1353 ◽  
Author(s):  
Vamsee D. Myneni ◽  
Kiyotaka Hitomi ◽  
Mari T. Kaartinen

Key Points Preadipocytes produce factor XIII-A, which acts as a negative regulator of adipogenesis by increasing plasma fibronectin matrix assembly. Factor XIII-A and plasma fibronectin matrix promote preadipocyte proliferation and proproliferative effects of insulin.


2017 ◽  
Vol 59 ◽  
pp. 39-53 ◽  
Author(s):  
Alexandra K. Pastino ◽  
Todd M. Greco ◽  
Rommel A. Mathias ◽  
Ileana M. Cristea ◽  
Jean E. Schwarzbauer

1996 ◽  
Vol 133 (2) ◽  
pp. 431-444 ◽  
Author(s):  
D C Hocking ◽  
R K Smith ◽  
P J McKeown-Longo

Fibronectin matrix assembly is a cell-dependent process which is upregulated in tissues at various times during development and wound repair to support the functions of cell adhesion, migration, and differentiation. Previous studies have demonstrated that the alpha 5 beta 1 integrin and fibronectin's amino terminus and III-1 module are important in fibronectin polymerization. We have recently shown that fibronectin's III-1 module contains a conformationally sensitive binding site for fibronectin's amino terminus (Hocking, D.C., J. Sottile, and P.J. McKeown-Longo. 1994. J. Biol. Chem. 269: 19183-19191). The present study was undertaken to define the relationship between the alpha 5 beta 1 integrin and fibronectin polymerization. Solid phase binding assays using recombinant III-10 and III-1 modules of human plasma fibronectin indicated that the III-10 module contains a conformation-dependent binding site for the III-1 module of fibronectin. Unfolded III-10 could support the formation of a ternary complex containing both III-1 and the amino-terminal 70-kD fragment, suggesting that the III-1 module can support the simultaneous binding of III-10 and 70 kD. Both unfolded III-10 and unfolded III-1 could support fibronectin binding, but only III-10 could promote the formation of disulfide-bonded multimers of fibronectin in the absence of cells. III-10-dependent multimer formation was inhibited by both the anti-III-1 monoclonal antibody, 9D2, and amino-terminal fragments of fibronectin. A fragment of III-10, termed III-10/A, was able to block matrix assembly in fibroblast monolayers. Similar results were obtained using the III-10A/RGE fragment, in which the RGD site had been mutated to RGE, indicating that III-I0/A was blocking matrix assembly by a mechanism distinct from disruption of integrin binding. Texas red-conjugated recombinant III-1,2 localized to beta 1-containing sites of focal adhesions on cells plated on fibronectin or the III-9,10 modules of fibronectin. Monoclonal antibodies against the III-1 or the III-9,10 modules of fibronectin blocked binding of III-1,2 to cells without disrupting focal adhesions. These data suggest that a role of the alpha 5 beta 1 integrin in matrix assembly is to regulate a series of sequential self-interactions which result in the polymerization of fibronectin.


Sign in / Sign up

Export Citation Format

Share Document