An ultrastructural study of the spermatozoid of the fern, Marsilea vestita

1975 ◽  
Vol 17 (3) ◽  
pp. 633-645
Author(s):  
D.G. Myles

The ultrastructure of the mature spermatozoid of Marsilea vestita was studied after its release from the microspore and prior to its penetration of the egg. The psermatozoid is a pear-shaped cell with a complex spiral structure coiled around the edge in the narrow anterior end. This coil is composed of a large mitochondrion, elongated nucleus with highly condensed chromatin, a ribbon of microtubules, and a dense band of material (flagellated band) into which the flagella are inserted. There are over a hundred flagella protruding from each spermatozoid along the length of the coil. At the anterior tip of the coil is a short multilayered structure. It is not known what maintains the helical shape of the coil. The microtubular ribbon could be involved, but it is also possible that either the flagellated band, the condensed chromatin, or both, are sufficiently rigid to retain their shpaes unaided. When the spermatozoid is first released from the microspore it includes a cytoplasmic vesicle in the posterior region containing plastids, mitochondria, and other organelles. This vesicle is shed, taking the nuclear envelope with it, before the spermatozoid reaches the egg.

1978 ◽  
Vol 30 (1) ◽  
pp. 265-281
Author(s):  
D.G. Myles

The ultrastructural details of fertilization in the fern Marsilea vestita, including gamete approach and fusion, the fate of the spermatozoid organelles and the development of a possible block to polyspermy are described. The spermatozoid approaches the egg through layers of mucilage that surround the megaspores. It moves down the neck of the archegonium into the cavity above the egg. In order to reach the egg, it must move through a small hole in the thick wall that lies across the top of the egg. The fusion of the plasma membranes of the gametes results in an outflow of egg cytoplasm into the clear space under the sperm plasma membrane, creating a fertilization cone. All the organelles of the fertilizing spermatozoid, including nucleus, mitochondrion, microtubule ribbon, multilayered structure, and flagellar band, with approximately 150 flagella, enter the egg cytoplasm. The nucleus enters as a condensed rod of chromatin with no nuclear envelope. The chromatin begins to disperse immediately and a new nuclear envelope is formed around the chromatin by egg endoplasmic reticulum. The mitochondrion and the microtubules of the ribbon and flagella are broken down, but the fates of the flagellar band and the multilayered structure have not been determined. After spermatozoid penetration, a new extracellular layer appears above the surface of the egg, beginning in the region of sperm penetration and spreading across the top of the egg. This layer may be important in preventing other spermatozoids from fusing with the egg.


Author(s):  
L. M. Lewis

The effects of colchicine on extranuclear microtubules associated with the macronucleus of Paramecium bursaria were studied to determine the possible role that these microtubules play in controlling the shape of the macronucleus. In the course of this study, the ultrastructure of the nuclear events of binary fission in control cells was also studied.During interphase in control cells, the micronucleus contains randomly distributed clumps of condensed chromatin and microtubular fragments. Throughout mitosis the nuclear envelope remains intact. During micronuclear prophase, cup-shaped microfilamentous structures appear that are filled with condensing chromatin. Microtubules are also present and are parallel to the division axis.


2001 ◽  
Vol 114 (20) ◽  
pp. 3643-3653 ◽  
Author(s):  
Madeleine Kihlmark ◽  
Gabriela Imreh ◽  
Einar Hallberg

We have produced new antibodies specific for the integral pore membrane protein POM121. Using these antibodies we show that during apoptosis POM121 becomes proteolytically degraded in a caspase-dependent manner. The POM121 antibodies and antibodies specific for other proteins of the nuclear envelope were used in a comparative study of nuclear apoptosis in staurosporine-treated buffalo rat liver cells. Nuclei from these cells were classified in three different stages of apoptotic progression: stage I, moderately condensed chromatin surrounded by a smooth nuclear periphery; stage II, compact patches of condensed chromatin collapsing against a smooth nuclear periphery; stage III, round compact chromatin bodies surrounded by grape-shaped nuclear periphery. We have performed double labeling immunofluorescence microscopy of individual apoptotic cells and quantitative immunoblotting analysis of total proteins from apoptotic cell cultures. The results showed that degradation of nuclear envelope marker proteins occurred in a specific order. POM121 degradation occurred surprisingly early and was initiated before nucleosomal DNA degradation could be detected using TUNEL assay and completed before clustering of the nuclear pores. POM121 was eliminated significantly more rapid compared with NUP153 (a peripheral protein located in the nucleoplasmic basket of the nuclear pore complex) and lamin B (a component of the nuclear lamina). Disappearance of NUP153 and lamin B was coincident with onset of DNA fragmentation and clustering of nuclear pores. By contrast, the peripheral NPC protein p62 was degraded much later. The results suggest that degradation of POM121 may be an important early step in propagation of nuclear apoptosis.


1975 ◽  
Vol 53 (4) ◽  
pp. 403-414 ◽  
Author(s):  
H. C. Huang ◽  
R. D. Tinline ◽  
L. C. Fowke

An ultrastructural study of mitosis in a diploid strain of Cochliobolus sativus showed the event to be intranuclear. Two nucleoli occasionally were present in interphase nuclei. During division the spindle pole body peripheral to the nuclear envelope divided; spindle microtubules radiated into the nucleoplasm from the amorphous granular region abutting the nuclear envelope beneath the bodies; chromosomes condensed at prophase, approached the equatorial plane at metaphase, and moved asynchronously at anaphase; single microtubules appeared attached to kinetochore-like structures. At telophase, nuclei exhibited maximal elongation; fissures of the nuclear envelope appeared in the interzonal region; the nucleolus dispersed. The polar nuclear areas became new daughter nuclei with nucleoli.


The male gamete of Equisetum is the largest and structurally most complex of those so far known in living pteridophytes. The ultrastructure of the mature gametes, is described with particular reference to the influence of the multilayered structure (MLS) on its form. In Equisetum this organelle comprises a band of over 300 microtubules, underlain along its anterior edge by a lamellar strip, 15-20 µm in length, and forming a sinistral spiral of 2 1/2 gyres. The tubules extend from the strip, at an angle of about 40°, to form a broad sheath around the twisted pyriform nucleus located in the posterior half of the cell. From the anterior tip of the lamellar strip to the posterior end of the nucleus the gamete completes a helix of 3 1/2 gyres, traversed throughout by the microtubular band. As a result of growth of this band during spermatid metamorphosis, and the 40° angle between the elates of the lamellar strip and the microtubules, the strip is displaced anteriorly and laterally relative to the nucleus. In the mature gamete, although the strip and the nucleus remain interconnected by the microtubular band, only the posterior half of the strip lies directly above the anterior third of the nucleus. The precise interrelationship between nucleus and MLS is illustrated by reconstructions which display the spermatozoids as they would appear if uncoiled. The 80-120 flagella are inserted outside that part of the micro tubular band lying anterior to the nucleus. Their basal bodies retain the proximal cartwheel and stellate transition regions found already in spermatids, but in the mature gametes they are invested with collars of osmiophilic material. The axonemes depart at 10° tangentially from the helix and extend backwards parallel with the tubules of the microtubular band. In consequence of the overlapping gyres of the helix the flagella lie in a spiral groove, similar to that found in cycad spermatozoids. From this groove the plasma membrane closely follows the external surface of the microtubular band. Contrasting with other archegoniates, maximal structural differentiation of the MLS is found in the mature spermatozoid. Flat-bottomed keels are present on the microtubules overlying the lamellar strip in which three distinct strata can be recognized. The two outer, consisting of alternating plates of electron-opaque and electron- transparent material, are separated by a continuous electron-opaque sheet. The innermost stratum comprises a continuous layer of finely granular material. Overlying the external anterior rim of the microtubular band is an osmiophilic crest. This retains the regularly banded substructure found in spermatids, but in mature spermatozoids is far more prominent than at any other time during spermatogenesis. It contains an electron-transparent lumen and is continuous with both the anterior ends of the microtubules and the anteriormost lamellar plates. Between the inner gyres of the MLS the crest is confluent with extensive sheets of smooth endoplasmic reticulum. Underlying the lamellar strip is a spiral mitochondrion with prominent dilated cristae. The central cytoplasm contains at least 100 pleomorphic mitochondria, together with from 15 to 25 amyloplasts and a few microbodies. In the nucleus, in addition to condensed chromatin, are several spherical electron-opaque bodies and aggregations of membrane-bound vesicles. Structures identical in appearance with the former also occur in the cytoplasm, and it is suggested that they may be nuclear in origin, as are similar bodies in animal spermatogenesis. The vesicles may represent portions of redundant nuclear envelope whose extrusion into the cytoplasm was prevented by the ensheathing microtubular band. Pores are still present in the nuclear envelope, where this is not invested by the band. The mature spermatozoids are liberated from antheridia within mucilaginous sacs bounded by fibrillar cell wall material, thought to contain lipid droplets promoting their dispersal when in contact with water. On escaping from the sacs the spermatozoids elongate slightly, and profiles of disrupted flagella are frequently encountered. Occasionally the microtubular band ensheathing the posterior part of the nucleus also becomes disorganized. There is no evidence of the utilization of amyloplast starch as an energy source during motility, and, in contrast to ferns and bryophytes, there is no sequestration of the central cytoplasm by the swimming spermatozoids.


Development ◽  
1971 ◽  
Vol 25 (3) ◽  
pp. 423-438
Author(s):  
Yves Gerin

An ultrastructural cytochemical study of the perinuclear corpuscles found in young oocytes of Ilyanassa obsoleta Say (molluscan gastropod) Ultrastructural study of the perinuclear region of young oocytes of Ilyanassa obsoleta shows the existence of numerous corpuscles which we have called ‘perinuclear corpuscles’. These are composed of filaments, of variable thickness (15–45 nm) and frequently show contacts with the nuclear envelope. With the development of the oocyte, they scatter in the cytoplasm and then disappear. Treatment of ultrathin sections by pronase or by pepsin provokes the disappearance of the main part of the perinuclear corpuscle. The residual structures of these corpuscles are not digested either by RNase or by DNase. However, if a digestion is carried out with DNase and pronase together, it increases the contrast of the residual structures. On the other hand, the contrast of the perinuclear corpuscles is not altered by specific techniques for polysaccharides. The constitution and the role of the perinuclear corpuscles is discussed.


Development ◽  
1982 ◽  
Vol 67 (1) ◽  
pp. 89-100
Author(s):  
Alison M. G. Robertson ◽  
J. N. Thomson

In the nematode C. elegans, cells undergoing programmed death in the developing ventral nerve cord were identified by Nomarski optics and prepared for ultrastructural study at various times after their birth in mitosis. The sequence of changes observed suggests that the hypodermis recognizes the dying cell before completion of telophase. The dying cell is engulfed and digestion then occurs until all that remains within the hypodermal cytoplasm is a collection of membranous whorls interspersed with condensed chromatin-like remnants. The process shares several features with apoptosis, the mode of programmed cell death observed in vertebrates and insects. The selection of cells for programmed death appears not to involve competition for peripheral targets.


1997 ◽  
Vol 8 (11) ◽  
pp. 2157-2169 ◽  
Author(s):  
Sarah A. Walter ◽  
Thomas M. Guadagno ◽  
James E. Ferrell

Previous work has established that activation of Mos, Mek, and p42 mitogen-activated protein (MAP) kinase can trigger release from G2-phase arrest in Xenopus oocytes and oocyte extracts and can cause Xenopus embryos and extracts to arrest in mitosis. Herein we have found that activation of the MAP kinase cascade can also bring about an interphase arrest in cycling extracts. Activation of the cascade early in the cycle was found to bring about the interphase arrest, which was characterized by an intact nuclear envelope, partially condensed chromatin, and interphase levels of H1 kinase activity, whereas activation of the cascade just before mitosis brought about the mitotic arrest, with a dissolved nuclear envelope, condensed chromatin, and high levels of H1 kinase activity. Early MAP kinase activation did not interfere significantly with DNA replication, cyclin synthesis, or association of cyclins with Cdc2, but it did prevent hyperphosphorylation of Cdc25 and Wee1 and activation of Cdc2/cyclin complexes. Thus, the extracts were arrested in a G2-like state, unable to activate Cdc2/cyclin complexes. The MAP kinase-induced G2 arrest appeared not to be related to the DNA replication checkpoint and not to be mediated through inhibition of Cdk2/cyclin E; evidently a novel mechanism underlies this arrest. Finally, we found that by delaying the inactivation of MAP kinase during release of a cytostatic factor-arrested extract from its arrest state, we could delay the subsequent entry into mitosis. This finding suggests that it is the persistence of activated MAP kinase after fertilization that allows the occurrence of a G2-phase during the first mitotic cell cycle.


Nematology ◽  
2007 ◽  
Vol 9 (1) ◽  
pp. 61-75 ◽  
Author(s):  
Sergei Spiridonov ◽  
Mutsuhiro Yoshida ◽  
Vladimir Yushin

AbstractA comparative ultrastructural study of the male gametes in entomopathogenic nematodes of the genus Steinernema (Rhabditida: Steinernematidae) is based on two species producing monomorphic (S. feltiae) and dimorphic (S. tami) spermatozoa. The spermatozoa of both species are basically the same as in many other Rhabditida. Immature spermatozoa from the testis are unpolarised cells containing a nucleus without a nuclear envelope, mitochondria and membranous organelles (MO), a unique component of the nematode spermatozoa. Mature spermatozoa have a nucleus, mitochondria and emptied MO, each attached to a sperm plasmalemma and opening to the exterior via a pore. Monomorphic mature spermatozoa of S. feltiae are 5 μm in diam., bear pseudopods, and form chains of several cells joined by gap junctions. The dimorphic immature spermatozoa of S. tami form spermatozeugmata where the single giant megaspermatozoon (30-35 μm diam.) bears numerous tiny, 3 μm microspermatozoa, intimately attached to the megaspermatozoon surface by gap junctions. Mature megaspermatozoa from the uterus are motile cells 35-50 μm diam.; they have prominent pseudopods and convey immotile, 2 μm microspermatozoa towards the oviduct. Unlike many other invertebrates, sperm dimorphism in S. tami does not change the basic set and structure of organelles, only their number. The genus Steinernema has two strategies for sperm agglomeration: i) chains of monomorphic spermatozoa of normal size, as in S. feltiae; and ii) spermatozeugmata based on a dramatic size difference between spermatozoa formed in the testis, as exemplified by S. tami. According to the types of sperm agglomeration, the genus Steinernema is divided into two main clades.


Sign in / Sign up

Export Citation Format

Share Document