scholarly journals Electron Microscopy of Peripheral Nerves and Neuromuscular Junctions in the Wasp Leg

1958 ◽  
Vol 4 (1) ◽  
pp. 107-114 ◽  
Author(s):  
George A. Edwards ◽  
Helmut Ruska ◽  
Étienne de Harven

The peripheral nerve branch innervating the femoral muscles of the common yellow jacket (Vespula carolina) has been found to possess a thick lemnoblast basement membrane and a complex mesaxon. The term "tunicated nerve" is proposed to designate the type of peripheral nerve in which one or several axons are loosely mantled by meandering, cytoplasm-enclosing membranes of the lemnoblast. The peripheral axon courses longitudinally in a groove in the muscle fiber between the plasma membrane of the muscle fiber and a cap formed by lemnoblast and tracheoblast. The junction is characterized by apposition of plasma membranes of axon and muscle fiber, abundant mitochondria, and synaptic vesicles in the axon, and aggregates of "aposynaptic granules" plus mitochondria and endoplasmic reticulum on the muscle side of the synapse. Unlike the vertebrate striated muscle fiber, no complex infolding of the synapsing plasma membrane of the muscle fiber occurs. The "connecting tissue" of the insect is formed by tracheoblasts, their basement membranes, and the basement membranes of other cells. Further mechanical support is given by the ramifying tracheoles. The physiologic roles of the specialized structures are considered.

2003 ◽  
Vol 95 (4) ◽  
pp. 1446-1452 ◽  
Author(s):  
Paola Palestini ◽  
Chiara Calvi ◽  
Elena Conforti ◽  
Rossella Daffara ◽  
Laura Botto ◽  
...  

We evaluated in anesthetized rabbits the compositional changes of plasmalemmal lipid microdomains from lung tissue samples after inducing pulmonary interstitial edema (0.5 ml/kg for 3 h, leading to ∼5% increase in extravascular water). Lipid microdomains (lipid rafts and caveolae) were present in the detergent-resistant fraction (DRF) obtained after discontinuous sucrose density gradient. DRF was enriched in caveolin-1, flotillin, aquaporin-1, GM1, cholesterol, sphingomyelin, and phosphatidylserine, and their contents significantly increased in interstitial edema. The higher DRF content in caveolin, flotillin, and aquaporin-1 and of the ganglioside GM1 suggests an increase both in caveolar domains and in lipid rafts, respectively. Compositional changes could be ascribed to endothelial and epithelial cells that provide most of plasma membrane surface area in the air-blood barrier. Alterations in lipid components in the plasma membrane may reflect rearrangement of floating lipid platforms within the membrane and/or lipid translocation from intracellular stores. Lipid traffic could be stimulated by the marked increase in hydraulic interstitial pressure after initial water accumulation, from approximately -10 to 5 cmH2O, due to the low compliance of the pulmonary tissue, in particular in the basement membranes and in the interfibrillar substance. Compositional changes in lipid microdomains represent a sign of cellular activation and suggest the potential role of mechanotransduction in response to developing interstitial edema.


1984 ◽  
Vol 98 (4) ◽  
pp. 1453-1473 ◽  
Author(s):  
U J McMahan ◽  
C R Slater

If skeletal muscles are damaged in ways that spare the basal lamina sheaths of the muscle fibers, new myofibers develop within the sheaths and neuromuscular junctions form at the original synaptic sites on them. At the regenerated neuromuscular junctions, as at the original ones, the muscle fiber plasma membrane is characterized by infoldings and a high concentration of acetylcholine receptors (AChRs). The aim of this study was to determine whether or not the synaptic portion of the myofiber basal lamina sheath plays a direct role in the formation of the subsynaptic apparatus on regenerating myofibers, a question raised by the results of earlier experiments. The junctional region of the frog cutaneous pectoris muscle was crushed or frozen, which resulted in disintegration and phagocytosis of all cells at the synapse but left intact much of the myofiber basal lamina. Reinnervation was prevented. When new myofibers developed within the basal lamina sheaths, patches of AChRs and infoldings formed preferentially at sites where the myofiber membrane was apposed to the synaptic region of the sheaths. Processes from unidentified cells gradually came to lie on the presynaptic side of the basal lamina at a small fraction of the synaptic sites, but there was no discernible correlation between their presence and the effectiveness of synaptic sites in accumulating AChRs. We therefore conclude that molecules stably attached to the myofiber basal lamina at synaptic sites direct the formation of subsynaptic apparatus in regenerating myofibers. An analysis of the distribution of AChR clusters at synaptic sites indicated that they formed as a result of myofiber-basal lamina interactions that occurred at numerous places along the synaptic basal lamina, that their presence was not dependent on the formation of plasma membrane infoldings, and that the concentration of receptors within clusters could be as great as the AChR concentration at normal neuromuscular junctions.


1976 ◽  
Vol 21 (3) ◽  
pp. 437-448
Author(s):  
A.S. Breathnach ◽  
M. Gross ◽  
B. Martin ◽  
C. Stolinski

Fixed (glutaraldehyde, 3%) and unfixed specimens of rat buccal epithelium, striated muscle, and liver, were cryoprotected with glycerol, freeze-fractured, and replicated without sublimation. A comparison of fracture faces of general plasma membranes, nuclear membranes, mitochondrial membranes, and membranes of rough endoplasmic reticulum revealed no significant differences as between fixed and unfixed material. Apart from some membranes of liver endoplasmic reticulum, there was no evidence of aggregation or redistribution of intramembranous particles in the unfixed material. The results demonstrate that chemical prefixation of tissues for freeze-fracture is not always necessary, or even desirable, and that glycerol may not be as deeply or directly implicated in particle aggregation as previously thought. Fixation with glutaraldehyde alters the cleaving behaviour of plasma membrane at desmosomes and tight junctions, but not at gap junctions.


1970 ◽  
Vol 47 (1) ◽  
pp. 84-98 ◽  
Author(s):  
J. M. Papadimitriou ◽  
P. Van Duijn

Two isozymes of aspartate aminotransferase have been demonstrated biochemically. One isozyme is found in the mitochondrial fraction of the cytoplasm, the other ("soluble") in the supernatant. Both isozymes can be demonstrated by the cytochemical technique of Lee and Torack, as reported in the preceding report. Aldehyde fixation rapidly inactivates both isozymes, especially the soluble one. Inactivation can be delayed by addition of ketoglutarate to the fixative. The ketoglutarate probably competes with the fixative for the active site of the enzyme, thus protecting that region of the molecule. This enables adequate tissue preservation with enough remaining enzymatic activity to be demonstrated by the precipitation of oxaloacetate as the lead salt from a medium containing α-ketoglutaric acid aspartic acid, and lead nitrate. Electron-opaque material was found not only in mitochondria but, as the result of substrate protection, on the plasma membranes of many cells including erythrocytes and bacteria, the limiting membrane of peroxisomes, and the transverse tubular system of striated muscle. Occasional centrioles, neurotubules, tubules in the tails of spermatozoa, the A-I band junction in myofibrils of striated muscle, and the ground substance between cisternae of endoplasmic reticulum in intestinal goblet cells also showed precipitate. In all cases, replacement of L-aspartic acid by D-aspartic acid in the medium resulted in unstained sections. The sensitivity of extramitochondrial sites to fixation, the need of ketoglutarate as an agent for protecting the enzymatic activity during the fixation process, and the known presence of only soluble isozyme in erythrocytes indicate that enzymatic activity at these sites can be attributed to the soluble isozyme. Localization of the soluble isozyme on the plasma membrane may be related to possible involvement in depolarization phenomena, amino acid transport, or synthesis of plasma membrane-bound mucopolysaccharides.


1960 ◽  
Vol 8 (1) ◽  
pp. 135-150 ◽  
Author(s):  
H. E. Karrer

The interconnections and the surfaces of the striated muscle cells which occur in thoracic and in lung veins of the mouse were studied with the electron microscope. The osmium-fixed tissues were embedded in methacrylate or in araldite and sectioned with a Porter-Blum microtome. Many preparations were stained before embedding with phosphotungstic acid or after sectioning with uranyl acetate. Typical intercalated discs are observed in this muscle. They are similar to the discs found in heart muscle. These intercalated discs represent boundaries between separate muscle cells. Along the discs, cells are joined in planes normal to their myofilaments. The same cells are also joined in planes parallel to the myofilaments by means of lateral interconnections. These lateral cell boundaries are in continuity with the intercalated discs. Three morphologically distinct parts occur within the lateral cell interconnections: One is characterized by small vesicles along the plasma membrane, the second part has the structure of desmosomes, and a third part represents an external compound membrane (formed by the two plasma membranes of the adjoining cells) and is termed "quintuple-layered cell interconnection." Small vesicles and plasma membrane enfoldings along the free surface of muscle cells are interpreted as products of a pinocytosis (phagocytosis) process. Some of them are seen to contain small membrane-bounded bodies or granules. The free cell surface shows a characteristic outer dense layer ("basement membrane") which accompanies the plasma membrane. The topographic relation of this dense layer with the plasma membrane seems to vary in different preparations. The significance of this variation is not well understood. On two occasions a typical arrangement o vesicles and tubules was observed at Z band levels, just beneath the plasma membrane. These structures are believed to represent endoplasmic reticulum. Their possible significance for the conduction of excitation is discussed.


1958 ◽  
Vol 4 (3) ◽  
pp. 251-256 ◽  
Author(s):  
George A. Edwards ◽  
Helmut Ruska ◽  
Étienne de Harven

The tymbal muscle fiber in the cicada closely resembles the indirect flight muscle fiber in its structural detail. We agree with other authors that the tymbal muscle is a modified indirect flight muscle. The peripheral nerve branches to the tymbal and flight muscle fibers are similar to those in the wasp leg. The axon is loosely mantled by irregular turns of the mesaxon, enclosing cytoplasm. The nerve is therefore a tunicated nerve. The neuromuscular junction in the high frequency muscle fibers shows direct apposition of plasma membranes of axon and muscle fiber, large numbers of mitochondria and synaptic vesicles in the axon, and concentrations of mitochondria, aposynaptic granules, and endoplasmic reticulum in the postsynaptic area of the muscle fiber. Of special interest is the multitude of intracellular, opposing membranes in the postsynaptic area. They form laminated stacks and whorls, vesicles, cysternae, and tubules. They occasionally show continuity with the plasma membrane, the outer nuclear envelope, and the circumfibrillar endoplasmic reticulum. The membrane system in this area is designated "rete synapticum." It is believed to add to the electrical capacity of the neuromuscular junction, to serve in transmission of potentials, and possibly is the site of the oscillating mechanism in high-frequency muscle fibers.


1966 ◽  
Vol 29 (3) ◽  
pp. 525-545 ◽  
Author(s):  
Alex B. Novikoff ◽  
Nelson Quintana ◽  
Humberto Villaverde ◽  
Regina Forschirm

In dorsal root ganglia and peripheral nerve of the rat and other species, nucleoside phosphatase and unspecific cholinesterase reaction products are found in the plasma membranes and spaces between them at two sites: (1) Schwann cell-axon interfaces and mesaxons of unmyelinated fibers, and (2) sheath cell-perikaryon interfaces and interfaces between adjacent sheath cells. Acetylcholinesterase reaction product is found in the perikaryon (within the endoplasmic reticulum) and the axon (axoplasmic surface). Nucleoside phosphatase reaction product is also found in the numerous vacuoles at the surface of perineurium cells, ganglion sheath cells, and cells surrounding some ganglion blood vessels. Nucleoside phosphatase activities in the sections fail to respond, in the manner described for "transport ATPase," to diisopropylphosphofluoridate, sodium and potassium ions, and ouabain. Nucleoside diphosphates are hydrolyzed more slowly than triphosphates in unmyelinated fibers, and are not hydrolyzed at the perikaryon surface. Nucleoside monophosphates are either not hydrolyzed or hydrolyzed very slowly. In contrast to these localizations, which are believed to demonstrate sites of enzyme activity, it is considered likely that diffusion artifacts account for the nucleoside phosphatase reaction product frequently found along the outer surfaces of myelinated fibers and within vacuoles at the Schwann cell surfaces of these fibers. The diffuse reaction product seen in basement membranes of ganglion and nerve may also be artifact.


1997 ◽  
Vol 137 (3) ◽  
pp. 671-683 ◽  
Author(s):  
Alain J. Denzer ◽  
Ralph Brandenberger ◽  
Matthias Gesemann ◽  
Matthias Chiquet ◽  
Markus A. Ruegg

Agrin is a heparan sulfate proteoglycan that is required for the formation and maintenance of neuromuscular junctions. During development, agrin is secreted from motor neurons to trigger the local aggregation of acetylcholine receptors (AChRs) and other proteins in the muscle fiber, which together compose the postsynaptic apparatus. After release from the motor neuron, agrin binds to the developing muscle basal lamina and remains associated with the synaptic portion throughout adulthood. We have recently shown that full-length chick agrin binds to a basement membrane-like preparation called Matrigel™. The first 130 amino acids from the NH2 terminus are necessary for the binding, and they are the reason why, on cultured chick myotubes, AChR clusters induced by full-length agrin are small. In the current report we show that an NH2-terminal fragment of agrin containing these 130 amino acids is sufficient to bind to Matrigel™ and that the binding to this preparation is mediated by laminin-1. The fragment also binds to laminin-2 and -4, the predominant laminin isoforms of the muscle fiber basal lamina. On cultured myotubes, it colocalizes with laminin and is enriched in AChR aggregates. In addition, we show that the effect of full-length agrin on the size of AChR clusters is reversed in the presence of the NH2-terminal agrin fragment. These data strongly suggest that binding of agrin to laminin provides the basis of its localization to synaptic basal lamina and other basement membranes.


Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.


Author(s):  
Nikolas K. Teiwes ◽  
Ingo Mey ◽  
Phila C. Baumann ◽  
Lena Strieker ◽  
Ulla Unkelbach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document