scholarly journals Down-regulation of collagen XI during late post-natal corneal development is followed by up-regulation after injury

2021 ◽  
Author(s):  
Mei Sun ◽  
Devon Cogswell ◽  
Sheila Adams ◽  
Yasmin Ayoubi ◽  
Ambuj Kumar ◽  
...  

Collagen XI plays a role in nucleating collagen fibrils and in controlling fibril diameter. The aim of this research is to elucidate the role that collagen XI plays in corneal fibrillogenesis during development and following injury. The temporal and spatial expression of collagen XI was evaluated in C57BL/6 wild type (WT) mice. For wound healing studies in adult mice, stromal injuries were created using techniques that avoid caustic chemicals. The temporal expression and spatial localization of collagen XI was studied following injury in a Col11a1 inducible knockout mouse model. We found that collagen XI expression occurs during early maturation and is upregulated after stromal injury in areas of regeneration and remodeling. Abnormal fibrillogenesis with new fibrils of heterogenous size and shape occurs after injury in a decreased collagen XI matrix. In conclusion, we found that collagen XI is expressed in the stroma during development and following injury in adults. Collagen XI is a regulator of collagen fibrillogenesis in regenerating corneal tissue.

2005 ◽  
Vol 25 (15) ◽  
pp. 6346-6354 ◽  
Author(s):  
Nathalie Bedard ◽  
Pascal Hingamp ◽  
Zhiyu Pang ◽  
Andrew Karaplis ◽  
Carlos Morales ◽  
...  

ABSTRACT Activation of ubiquitination occurs during spermatogenesis and is dependent on the induction of isoforms of the UBC4 family of ubiquitin-conjugating enzymes. The UBC4-testis isoform is testis specific, is induced in round spermatids, and demonstrates biochemical functions distinct from a ubiquitously expressed isoform UBC4-1. To explore further the function of UBC4-testis, mice bearing inactivation of this gene were produced. Homozygous (−/−) mice showed normal body growth and fertility. Although testis weight and morphology were normal in testes from adult mice, examination of young mice during the first wave of spermatogenesis revealed that testes were ∼10% smaller in weight at 40 and 45 days of age but had become normal at 65 days of age. Overall protein content, levels of ubiquitinated proteins, and ubiquitin-conjugating activity did not differ between wild-type and homozygous (−/−) mice. Spermatid number, as well as the motility of spermatozoa isolated from the epididymis, was also normal in homozygous (−/−) mice. To determine whether the germ cells lacking UBC4-testis might be more sensitive to stress, testes from wild-type and knockout mice were exposed to heat stress by implantation in the abdominal cavity. Testes from both strains of mice showed similar rates of degeneration in response to heat. The lack of an obvious phenotype did not appear to be due to induction of other UBC4 isoforms, as shown by two-dimensional gel immunoblotting. Our data indicate that UBC4-testis plays a role in early maturation of the testis and suggest that the many UBC4 isoforms have mixed redundant and specific functions.


2003 ◽  
Vol 14 (5) ◽  
pp. 1913-1922 ◽  
Author(s):  
Yi Elaine Huang ◽  
Miho Iijima ◽  
Carole A. Parent ◽  
Satoru Funamoto ◽  
Richard A. Firtel ◽  
...  

Recent studies have demonstrated that PH domains specific for PI(3,4,5)P3 accumulate at the leading edge of a number of migrating cells and that PI3Ks and PTEN associate with the membrane at the front and back, respectively, of chemotaxing Dictyostelium discoideum cells. However, the dependence of chemoattractant induced changes in PI(3,4,5)P3 on PI3K and PTEN activities have not been defined. We find that bulk PI(3,4,5)P3 levels increase transiently upon chemoattractant stimulation, and the changes are greater and more prolonged in pten– cells. PI3K activation increases within 5 s of chemoattractant addition and then declines to a low level of activity identically in wild-type and pten– cells. Reconstitution of the PI3K activation profile can be achieved by mixing membranes from stimulated pi3k1–/pi3k2– cells with cytosolic PI3Ks from unstimulated cells. These studies show that significant control of chemotaxis occurs upstream of the PI3Ks and that regulation of the PI3Ks and PTEN cooperate to shape the temporal and spatial localization of PI(3,4,5)P3.


2004 ◽  
Vol 166 (4) ◽  
pp. 559-570 ◽  
Author(s):  
Shin-ichiro Kitajiri ◽  
Kanehisa Fukumoto ◽  
Masaki Hata ◽  
Hiroyuki Sasaki ◽  
Tatsuya Katsuno ◽  
...  

Ezrin/radixin/moesin (ERM) proteins cross-link actin filaments to plasma membranes to integrate the function of cortical layers, especially microvilli. We found that in cochlear and vestibular sensory hair cells of adult wild-type mice, radixin was specifically enriched in stereocilia, specially developed giant microvilli, and that radixin-deficient (Rdx−/−) adult mice exhibited deafness but no obvious vestibular dysfunction. Before the age of hearing onset (∼2 wk), in the cochlea and vestibule of Rdx−/− mice, stereocilia developed normally in which ezrin was concentrated. As these Rdx−/− mice grew, ezrin-based cochlear stereocilia progressively degenerated, causing deafness, whereas ezrin-based vestibular stereocilia were maintained normally in adult Rdx−/− mice. Thus, we concluded that radixin is indispensable for the hearing ability in mice through the maintenance of cochlear stereocilia, once developed. In Rdx−/− mice, ezrin appeared to compensate for radixin deficiency in terms of the development of cochlear stereocilia and the development/maintenance of vestibular stereocilia. These findings indicated the existence of complicate functional redundancy in situ among ERM proteins.


2000 ◽  
Vol 113 (13) ◽  
pp. 2455-2462 ◽  
Author(s):  
B. Eckes ◽  
E. Colucci-Guyon ◽  
H. Smola ◽  
S. Nodder ◽  
C. Babinet ◽  
...  

It is generally assumed that the vimentin intermediate filament network present in most mesenchymally-derived cells is in part responsible for the strength and integrity of these cells, and necessary for any tissue movements that require the generation of significant tractional forces. Surprisingly, we have shown that transgenic KO mice deficient for vimentin are apparently able to undergo embryonic development absolutely normally and go onto develop into adulthood and breed without showing any obvious phenotype. However, fibroblasts derived from these mice are mechanically weak and severely disabled in their capacity to migrate and to contract a 3-D collagen network. To assess whether these functions are necessary for more challenging tissue movements such as those driving in vivo tissue repair processes, we have analysed wound healing ability in wild-type versus vimentin-deficient embryos and adult mice. Wounds in vimentin-deficient adult animals showed delayed migration of fibroblasts into the wound site and subsequently retarded contraction that correlated with a delayed appearance of myofibroblasts at the wound site. Wounds made to vimentin-deficient embryos also failed to heal during the 24 hour culture period it takes for wild-type embryos to fully heal an equivalent wound. By DiI marking the wound mesenchyme and following its fate during the healing process we showed that this impaired healing is almost entirely due to a failure of mesenchymal contraction at the embryonic wound site. These observations reveal an in vivo phenotype for the vimentin-deficient mouse, and challenge the dogma that key morphogenetic events occurring during development require generation of significant tractional forces by mesenchymal cells.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
H J Cho ◽  
C S Lee ◽  
J W Lee ◽  
H M Yang ◽  
H S Kim

Abstract Background Specific surface markers that enable monitoring of cell subsets would be valuable for establishing the conditions under which pluripotent stem cells (PSCs) differentiate into cardiac progenitor cells (CPCs) and cardiomyocytes (CMCs). Methods and results To verify whether a specific marker is expressed during heart development, we assessed its expression using the CLARITY technique. After immersion in a solution with a refractive index matching that of the CLARITY hybrid, the mouse embryo became transparent. After immunostaining the cleared embryo sample, Adgrl2 was exclusively observed in cardiac cells expressing α-SA at embryonic day E9.5 and E10.5. Our clarified 3D images and movies show that four chambers of the heart are fully developed at E10.5 but not at E9.5. At E9.5, Adgrl2 is observed at the ventricle and atrium, while Adgrl2 is present in all chambers of the heart at E10.5. Next, we performed LacZ (β-Gal) staining in heterozygous Adgrl2 KO embryos to evaluate Adgrl2 expression. As a result, LacZ staining showed that Adgrl2 was predominantly expressed in the heart during the embryonic developmental stage. Adgrl2 knockout in mice was embryonically lethal because of severe heart, but not vascular, defects. To examine the use of Adgrl2 as a bona fide CPC marker during heart development, we tracked Adgrl2 expression during early embryonic development. The heart of Adgrl2−/− embryos at E10.5 exhibited occlusion of the RV, and the expression levels of Gata4 and Nkx2.5 were not as high as those in wild-type and Adgrl2+/− embryos. Interestingly, the heart of Adgrl2−/− embryos, unlike those of wild-type and Adgrl2+/− embryos between E13.5 and E15.5 had a single ventricle revealing a ventricular septal defect. The specific expression pattern of Adgrl2 in PSC-derived cardiac lineage cells as well as in embryonic heart, adult mice, and human heart tissues. Conclusion We demonstrate that Adgrl2 plays a pivotal and functional role across all strata of the cardiomyogenic lineage, as early as the precursor stage of heart development. These findings shed light on heart development and regeneration. Acknowledgement/Funding Grants from “Strategic Center of Cell and Bio Therapy” (grant number: HI17C2085) and “Korea Research-Driven Hospital” (HI14C1277)


2002 ◽  
Vol 292 (7) ◽  
pp. 633-639 ◽  
Author(s):  
Gianluca de Rienzo ◽  
Rona di Sena ◽  
Diana Ferrara ◽  
Carmela Palmiero ◽  
Gabriella Chieffi Baccari ◽  
...  

2000 ◽  
Vol 25 (3) ◽  
pp. 149-159 ◽  
Author(s):  
Takatoshi Uemura ◽  
Eiko Kubo ◽  
Yasuyoshi Kanari ◽  
Toshimiti Ikemura ◽  
Kouichi Tatsumi ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2161-2161
Author(s):  
Kai Huang ◽  
Monica L. Bailey ◽  
Dwayne L. Barber

Abstract Erythropoietin (EPO), the primary cytokine regulator of red blood cell production, acts through binding to its cognate receptor (EPO-R), which is primarily expressed on erythroid precursors. Knockout studies have illustrated a critical role for EPO, EPO-R and the downstream tyrosine kinase JAK2 in embryogenesis as mice lacking any of these components die from a fatal anemia at E13.5. These data suggest that EPO-R and/or JAK2 are required to promote erythropoiesis in vivo. EPO provides mitogenic, differentiative and cell survival signals to erythroid progenitors. We have performed microarray studies to identify target genes regulated by EPO in cell lines and primary cells. We utilized an erythroid cell line (HCD-57), a myeloid cell line stably expressing the EPO-R (Ba/F3-EPO-R), fetal liver cells isolated from E13.5 mice as well as splenocytes isolated from Phenylhydrazine (PHZ)-primed adult mice. Fetal liver cells permit the study of normal erythropoiesis in a fetal setting whereas the PHZ-primed erythroblasts permit analysis of stress erythropoiesis in adult mice. We harvested cells at 1, 8, 12 and 24 hr after EPO stimulation which correspond to immediate early gene induction (1 hr), S phase entry (8 hr) and G2/M (24 hr) time points. RNA was prepared and hybridized to the Affymetrix U74A mouse chip. Data was analyzed and only those genes with statistical significance (p < 0.05) were considered for further characterization. Analysis of the 1 hr time points has revealed that six genes are co-regulated by EPO in all four cellular environments. Included within this co-hort are the Suppressor of Cytokine Signaling genes (Cis, SOCS-1 and SOCS-3) and Myc, as well as two novel genes. We compared our datasets with other published analyses. The Williams laboratory has identified an Interferon-Stimulated Gene “ISG” data set corresponding to genes induced by Type I or Type II Interferon’s. We queried our PHZ-primed erythroblast data set against the Williams ISG database. Of the 305 human genes in the ISG database, 218 are expressed on the Affymetrix chip. We searched our dataset for genes that are induced 1.5-fold or greater at 2 of 4, 3 of 4 or 4 of 4 time points. Thirty-four genes are also stimulated by EPO in PHZ-primed erythroblasts including classical IFN-regulated genes such as Interferon-regulator factor-1 (IRF-1), Interferon-stimulated gene-15 (ISG-15), Interferon-induced transmembrane protein 3-like (IFITM-3l), Protein Kinase R (PKR) and Signal Transducer and Activator of Transcription-1 (STAT1). We have previously demonstrated that STAT1 is a negative regulator of murine erythropoiesis utilizing STAT1-deficient mice. We also analyzed immediate early gene regulation in fetal liver cells and PHZ-primed erythroblasts isolated from STAT1-deficient mice stimulated with EPO for 1 hr. These data were compared with the relevant wild type data sets. EPO stimulates the induction of the ubiquitin-like protein, ISG-15 in both wild type and STAT1−/− erythroblasts. Several signaling proteins have been shown to be covalently modified by ISG-15 including STAT1. ISG-15 is removed from ISGylated products by the deubiquitinating enzyme, Ubp43. EPO stimulates a rapid accumulation of Ubp43 in wild type cells, however, EPO fails to induce Ubp43 mRNA in STAT1-deficient fetal liver and PHZ-primed erythroblasts. Experiments are underway to confirm that the mechanism by which STAT1 exerts negative regulation of erythropoiesis is via upregulation of the deubiquitinating enzyme, Ubp43.


2003 ◽  
Vol 77 (6) ◽  
pp. 653-664 ◽  
Author(s):  
Julie T Daniels ◽  
Gerd Geerling ◽  
Robert A Alexander ◽  
Gillian Murphy ◽  
Peng T Khaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document