Impaired wound healing in embryonic and adult mice lacking vimentin

2000 ◽  
Vol 113 (13) ◽  
pp. 2455-2462 ◽  
Author(s):  
B. Eckes ◽  
E. Colucci-Guyon ◽  
H. Smola ◽  
S. Nodder ◽  
C. Babinet ◽  
...  

It is generally assumed that the vimentin intermediate filament network present in most mesenchymally-derived cells is in part responsible for the strength and integrity of these cells, and necessary for any tissue movements that require the generation of significant tractional forces. Surprisingly, we have shown that transgenic KO mice deficient for vimentin are apparently able to undergo embryonic development absolutely normally and go onto develop into adulthood and breed without showing any obvious phenotype. However, fibroblasts derived from these mice are mechanically weak and severely disabled in their capacity to migrate and to contract a 3-D collagen network. To assess whether these functions are necessary for more challenging tissue movements such as those driving in vivo tissue repair processes, we have analysed wound healing ability in wild-type versus vimentin-deficient embryos and adult mice. Wounds in vimentin-deficient adult animals showed delayed migration of fibroblasts into the wound site and subsequently retarded contraction that correlated with a delayed appearance of myofibroblasts at the wound site. Wounds made to vimentin-deficient embryos also failed to heal during the 24 hour culture period it takes for wild-type embryos to fully heal an equivalent wound. By DiI marking the wound mesenchyme and following its fate during the healing process we showed that this impaired healing is almost entirely due to a failure of mesenchymal contraction at the embryonic wound site. These observations reveal an in vivo phenotype for the vimentin-deficient mouse, and challenge the dogma that key morphogenetic events occurring during development require generation of significant tractional forces by mesenchymal cells.

2021 ◽  
Vol 11 (19) ◽  
pp. 9343
Author(s):  
Ly Thi Huong Nguyen ◽  
Sang-Hyun Ahn ◽  
Min-Jin Choi ◽  
In-Jun Yang ◽  
Heung-Mook Shin

The delayed and impaired wound healing caused by dexamethasone (DEX) is commonly reported. Puerarin, the major isoflavone found in Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep promoted the wound healing process in diabetic rats. However, the effects and underlying mechanisms of puerarin on DEX-impaired wound healing have not been investigated. This study examined the potential uses of puerarin in upregulating keratinocyte proliferation and migration in dexamethasone (DEX)-suppressed wound healing model. The effects of puerarin on wound healing in vivo were investigated by taking full-thickness 5 mm punch biopsies from the dorsal skin of BALB/c mice and then treating them topically with 0.1% DEX. For the in vitro study, DEX-treated HaCaT cells were used to examine the effects of puerarin on DEX-induced keratinocyte proliferation and migration and the mechanisms of its action. Puerarin, when applied topically, accelerated the wound closure rate, increased the density of the capillaries, and upregulated the level of collagen fibers and TGF-β in the wound sites compared to the DEX-treated mice. Puerarin promoted the proliferation and migration of keratinocytes by activating the ERK and Akt signaling pathways in DEX-treated HaCaT cells. In conclusion, puerarin could be effective in reversing delayed and disrupted wound healing associated with DEX treatments.


2018 ◽  
Vol 33 (4) ◽  
pp. 527-540 ◽  
Author(s):  
Marek Konop ◽  
Joanna Czuwara ◽  
Ewa Kłodzińska ◽  
Anna K Laskowska ◽  
Urszula Zielenkiewicz ◽  
...  

Impaired wound healing is a major medical problem in diabetes. The objective of this study was to determine the possible application of an insoluble fraction of fur-derived keratin biomaterial as a wound dressing in a full thickness surgical skin wound model in mice ( n = 20) with iatrogenically induced diabetes. The obtained keratin dressing was examined in vitro and in vivo. In vitro study showed the keratin dressing is tissue biocompatible and non-toxic for murine fibroblasts. Antimicrobial examination revealed the keratin dressing inhibited the growth of S. aureus and E. coli. In vivo studies showed the obtained dressing significantly ( p < 0.05) accelerated healing during the first week after surgery compared to control wounds. Keratin dressings were incorporated naturally into granulation and regenerating tissue without any visible signs of inflammatory response, which was confirmed by clinical and histopathological analysis. It is one of the first studies to show application of insoluble keratin proteins and its properties as a wound dressing. The obtained keratin dressing accelerated wound healing in mice with iatrogenically induced diabetes. Therefore, it can be considered as a safe and efficient wound dressing. Although future studies are needed to explain the molecular mechanism behind fur-derived keratin effect during the multilayer wound healing process, our findings may open the way for a new class of insoluble fur keratin dressings in chronic difficult to heal wounds treatment.


2008 ◽  
Vol 295 (4) ◽  
pp. C931-C943 ◽  
Author(s):  
Hsiu-Ni Kung ◽  
Mei-Jun Yang ◽  
Chi-Fen Chang ◽  
Yat-Pang Chau ◽  
Kuo-Shyan Lu

Impaired wound healing is a serious problem for diabetic patients. Wound healing is a complex process that requires the cooperation of many cell types, including keratinocytes, fibroblasts, endothelial cells, and macrophages. β-Lapachone, a natural compound extracted from the bark of the lapacho tree ( Tabebuia avellanedae), is well known for its antitumor, antiinflammatory, and antineoplastic effects at different concentrations and conditions, but its effects on wound healing have not been studied. The purpose of the present study was to investigate the effects of β-lapachone on wound healing and its underlying mechanism. In the present study, we demonstrated that a low dose of β-lapachone enhanced the proliferation in several cells, facilitated the migration of mouse 3T3 fibroblasts and human endothelial EAhy926 cells through different MAPK signaling pathways, and accelerated scrape-wound healing in vitro. Application of ointment with or without β-lapachone to a punched wound in normal and diabetic ( db/ db) mice showed that the healing process was faster in β-lapachone-treated animals than in those treated with vehicle only. In addition, β-lapachone induced macrophages to release VEGF and EGF, which are beneficial for growth of many cells. Our results showed that β-lapachone can increase cell proliferation, including keratinocytes, fibroblasts, and endothelial cells, and migration of fibroblasts and endothelial cells and thus accelerate wound healing. Therefore, we suggest that β-lapachone may have potential for therapeutic use for wound healing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joel Gil ◽  
Irena Pastar ◽  
Richard A. Houghten ◽  
Shruti Padhee ◽  
Alexander Higa ◽  
...  

Both acute and chronic cutaneous wounds are often difficult to treat due to the high-risk for bacterial contamination. Once hospitalized, open wounds are at a high-risk for developing hospital-associated infections caused by multi drug-resistant bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. Treating these infections is challenging, not only because of antibiotic resistance, but also due to the production of biofilms. New treatment strategies are needed that will help in both stimulating the wound healing process, as well as preventing and eliminating bacterial wound infections. Fusaricidins are naturally occurring cyclic lipopeptides with antimicrobial properties that have shown to be effective against a variety of fungi and Gram-positive bacteria, with low toxicity. Continuing with our efforts toward the identification of novel cyclic lipopeptides Fusaricidin analogs, herein we report the synthesis and evaluation of the antimicrobial activity for two novel cyclic lipopeptides (CLP), CLP 2605-4 and CLP 2612-8.1 against methicillin resistant S. aureus and P. aeruginosa, respectively, in in vivo porcine full thickness wound model. Both CLPs were able to reduce bacterial counts by approximately 3 log CFU/g by the last assessment day. Peptide 2612-8.1 slightly enhanced the wound healing, however, wounds treated with peptide 2605-4, have shown higher levels of inflammation and impaired wound healing process. This study highlights the importance of identifying new antimicrobials that can combat bacterial infection while not impeding tissue repair.


Theranostics ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 477-490 ◽  
Author(s):  
Jiaolin Ning ◽  
Hailin Zhao ◽  
Bin Chen ◽  
Emma Zheling Mi ◽  
Zhen Yang ◽  
...  

2021 ◽  
Vol 14 (11) ◽  
pp. 1103
Author(s):  
Mariarosaria Galeano ◽  
Giovanni Pallio ◽  
Natasha Irrera ◽  
Federica Mannino ◽  
Alessandra Bitto ◽  
...  

The normal wound healing process is characterized by a complex, highly integrated cascade of events, requiring the interactions of many cell types, including inflammatory cells, fibroblasts, keratinocytes and endothelial cells, as well as the involvement of growth factors and enzymes. However, several diseases such as diabetes, thermal injury and ischemia could lead to an impaired wound healing process characterized by wound hypoxia, high levels of oxygen radicals, reduced angiogenesis, decreased collagen synthesis and organization. Polydeoxyribonucleotide (PDRN) has been used to improve wound healing through local and systemic administration thanks to its ability to promote cell migration and growth, angiogenesis, and to reduce inflammation on impaired wound healing models in vitro, in vivo and clinical studies. In light of all these observations, the aim of this review is to provide a full overview of PDRN applications on skin regeneration. We reviewed papers published in the last 25 years on PubMed, inserting “polydeoxyribonucleotide and wound healing” as the main search term. All data obtained proved the ability of PDRN in promoting physiological tissue repair through adenosine A2A receptor activation and salvage pathway suggesting that PDRN has proven encouraging results in terms of healing time, wound regeneration and absence of side effects.


Author(s):  
Qingyang Gu ◽  
Dewen Wang ◽  
Yabing Gao ◽  
Jie Zhou ◽  
Ruiyun Peng ◽  
...  

2020 ◽  
Vol 26 (36) ◽  
pp. 4551-4568
Author(s):  
Mohammad Kashif Iqubal ◽  
Sadaf Saleem ◽  
Ashif Iqubal ◽  
Aiswarya Chaudhuri ◽  
Faheem Hyder Pottoo ◽  
...  

A wound refers to the epithelial loss, accompanied by loss of muscle fibers collagen, nerves and bone instigated by surgery, trauma, frictions or by heat. Process of wound healing is a compounded activity of recovering the functional integrity of the damaged tissues. This process is mediated by various cytokines and growth factors usually liberated at the wound site. A plethora of herbal and synthetic drugs, as well as photodynamic therapy, is available to facilitate the process of wound healing. Generally, the systems used for the management of wounds tend to act through covering the ruptured site, reduce pain, inflammation, and prevent the invasion and growth of microorganisms. The available systems are, though, enough to meet these requirements, but the involvement of nanotechnology can ameliorate the performance of these protective coverings. In recent years, nano-based formulations have gained immense popularity among researchers for the wound healing process due to the enhanced benefits they offer over the conventional preparations. Hereupon, this review aims to cover the entire roadmap of wound healing, beginning from the molecular factors involved in the process, the various synthetic and herbal agents, and combination therapy available for the treatment and the current nano-based systems available for delivery through the topical route for wound healing.


2021 ◽  
Vol 22 (8) ◽  
pp. 4087
Author(s):  
Maria Quitério ◽  
Sandra Simões ◽  
Andreia Ascenso ◽  
Manuela Carvalheiro ◽  
Ana Paula Leandro ◽  
...  

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process—however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


2021 ◽  
Vol 22 (9) ◽  
pp. 4678
Author(s):  
Sepideh Parvanian ◽  
Hualian Zha ◽  
Dandan Su ◽  
Lifang Xi ◽  
Yaming Jiu ◽  
...  

Mechanical stress following injury regulates the quality and speed of wound healing. Improper mechanotransduction can lead to impaired wound healing and scar formation. Vimentin intermediate filaments control fibroblasts’ response to mechanical stress and lack of vimentin makes cells significantly vulnerable to environmental stress. We previously reported the involvement of exosomal vimentin in mediating wound healing. Here we performed in vitro and in vivo experiments to explore the effect of wide-type and vimentin knockout exosomes in accelerating wound healing under osmotic stress condition. Our results showed that osmotic stress increases the size and enhances the release of exosomes. Furthermore, our findings revealed that exosomal vimentin enhances wound healing by protecting fibroblasts against osmotic stress and inhibiting stress-induced apoptosis. These data suggest that exosomes could be considered either as a stress modifier to restore the osmotic balance or as a conveyer of stress to induce osmotic stress-driven conditions.


Sign in / Sign up

Export Citation Format

Share Document