scholarly journals Endotoxin-induced platelet aggregation and secretion. I. Morphological changes and pharmacological effects

1977 ◽  
Vol 28 (1) ◽  
pp. 211-223
Author(s):  
D.E. MacIntyre ◽  
A.P. Allen ◽  
K.J. Thorne ◽  
A.M. Glauert ◽  
J.L. Gordon

Endotoxin lipopolysaccharide (LPS) from Acinetobacter 199A induced aggregation of blood platelets from immune adherence-positive species (rat, rabbit) but not from immune adherence-negative species such as pig and man. Aggregation occurred in 2 phases: the first was not accompanied by secretion of platelet constituents, was apparently a consequence of C3 activation, and was selectively inhibited by EGTA. The second phase of aggregation was associated with secretion of platelet granule contents, and with a lesser amount of cytoplasmic leakage. Secondary aggregation was abolished by the sulphydryl alkylating agent N-ethylmaleimide, and by agents which increased the level of cyclic AMP in platelets, such as prostaglandin E1 (a stimulator of adenylate cyclase) and methyl xanthines (inhibitors of phosphodiesterase). Secondary aggregation was partly inhibited by agents which block platelet prostaglandin biosynthesis (e.g. aspirin, indomethacin). Primary aggregation was unaffected by these inhibitors at concentrations which blocked secondary aggregation.

1994 ◽  
Vol 71 (01) ◽  
pp. 091-094 ◽  
Author(s):  
M Cattaneo ◽  
B Akkawat ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
C Cimminiello ◽  
...  

SummaryNormal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, prostaglandin E1 (PGE1) and chymotrypsin. Released adenosine diphosphate (ADP) plays an important role in the stabilization of thrombin-induced human platelet aggregates. Since ticlopidine inhibits the platelet responses to ADP, we studied thrombin-induced aggregation and deaggregation of 14C-serotonin-labeled platelets from 12 patients with cardiovascular disease before and 7 days after the oral administration of ticlopidine, 250 mg b.i.d. Before and after ticlopidine, platelets stimulated with 1 U/ml thrombin aggregated, released about 80–90% 14C-serotinin and did not deaggregate spontaneously within 5 min from stimulation. Before ticlopidine, hirudin (5× the activity of thrombin) and PGE1 (10 μmol/1) plus chymotrypsin (10 U/ml) or plasmin (0.06 U/ml), added at the peak of platelet aggregation, caused slight or no platelet deaggregation. After ticlopidine, the extent of platelet deaggregation caused by the same inhibitors was significantly greater than before ticlopidine. The addition of ADP (10 μmol/1) to platelet suspensions 5 s after thrombin did not prevent the deaggregation of ticlopidine-treated platelets. Thus, ticlopidine facilitates the deaggregation of thrombin-induced human platelet aggregates, most probably because it inhibits the effects of ADP on platelets.


1964 ◽  
Vol 12 (01) ◽  
pp. 179-200 ◽  
Author(s):  
Torstein Hovig

SummaryThe effect of calcium and magnesium on the aggregation of rabbit blood platelets in vitro was studied, with the following results:1. Platelet aggregation induced by ADP or collagen could be prevented by EGTA or EDTA. The aggregating effect was restored by recalcification. The effect was also restored by addition of magnesium in EDTA-PRP, but not in EGTA-PRP unless a surplus of calcium was present.2. Calcium remained in concentrations of the order of 0.15–0.25 mM after dialysis or cation exchange of plasma. Aggregation of washed platelets resuspended in such plasma could not be produced with ADP or collagen, unless the calcium concentration was increased or that magnesium was added.3. The adhesiveness of blood platelets to collagen was reduced in EGTA-PRP and EDTA-PRP. Release of ADP from platelets influenced by collagen could not be demonstrated either in EGTA-PRP (presence of magnesium) or in EDTA-PRP.4. It is concluded that calcium is a necessary factor both for the reaction leading to release of ADP and for the the aggregation produced by ADP.5. Thrombin induced aggregation of washed platelets suspended in tris-buffered saline in the presence of calcium. No effect of magnesium could be observed unless small quantities of calcium were present.


1981 ◽  
Author(s):  
David C Stump ◽  
Donald E Macfarlane

Epinephrine induces platelet aggregation, potentiates aggregation by other agents, and blocks the stimulation of the adenylate cyclase by prostaglandins. Synthetic α-adrenergic agents have not been shown to induce aggregation. The effects of clonidine, an α2-agonist, and ρ-aminoclonidine on platelets were examined. Clonidine potentiated aggregation induced by 0.5μM ADP by 1.4-fold (1/2 max 0.5μM). It did not induce significant aggregation itself, and it inhibited aggregation induced by 5μM epinephrine (1/2 max lμM). It inhibited cyclic AMP accumulation induced by PGE1 by a maximum of 25% (1/2 max O.lμM) and it blocked inhibition by epinephrine. No significant specific binding of [3H] clonidine was observed to intact platelets. ρ-Aminoclonidine induced aggregation with delayed second phase (1/2 max 0.2μM), and potentiated ADP aggregation by 2-fold (1/2 max 0.2μM). Aggregation induced by epinephrine was more rapid, and was partially inhibited by ρ-aminoclonidine. It inhibited cyclic AMP accumulation by 50% max (1/2 max O.lμM) and attenuated epinephrine’s effect to the same level. The direct effects of ρ-aminoclonidine were blocked by lμM yohimbine, a selective α2-antagonist. Both clonidine and ρ—aminoclonidine blocked the specific binding of [3H]yohimbine (1/2 max 0.5μM). These results suggest that the platelet bears an α2-receptor with affinity for epinephrine, ρ-aminoclonidine and clonidine as agonists but that these agents display differing intrinsic activity and/or receptor reserve.


Blood ◽  
1979 ◽  
Vol 54 (3) ◽  
pp. 659-672 ◽  
Author(s):  
AC Cox ◽  
P Inyangetor ◽  
CT Esmon ◽  
BN White

Abstract Platelets provide a procoagulant activity for the conversion of prothrombin to thrombin during normal hemostatis. This activity designated as platelet prothrombin-converting activity (PPCA) was monitored as rate of thrombin production in a two-stage assay using gel- filtered bovine platelets, factor Xa, and prothrombin. Expression of PPCA was not associated with ADP-induced release or platelet shape change but was associated with aggregation. Release of the contents of dense bodies, measured by release of 14C-5-hydroxytryptamine, was not required for expression of PPCA during platelet aggregation. During the PPCA assay, 5-hydroxytrypamine was released, but only after onset of thrombin production. Furthermore, the release of 5-hydroxytryptamine was retarded during the assay by the addition of 2 mM theophylline and 100 nM prostaglandin E1 without a comparable reduction in PPCA. In addition, 125I-factor-Xa was bound in greater amounts to platelets (aspirin-treated) after ADP-induced aggregation (without detectable release) than to unactivated control platelets. Finally, the PPCA of the ADP-activated platelets was saturated with respect to factors Xa and Va at less than 1 nM concentrations, indicating that the aggregation induced by ADP leads to the exposure of specific procoagulant sites by some process other than dense body secretion.


1971 ◽  
Vol 49 (11) ◽  
pp. 1236-1244 ◽  
Author(s):  
A. F. Lewis ◽  
R. C. Dickson

The presence of a complex formed between bacterial endotoxin and cupric ion (Cu2+) causes mammalian (human, pig, and rabbit) blood platelets to aggregate in suspension. Complexes formed between endotoxin and Zn2+, Co2+, Ni2+, Mn2+, Fe3+, Ca2+, Mg2+, Ba2+, Al3+, Be2+, Pb2+, Cd2+, Ag+, or Hg2+ do not cause aggregation. The initial stage of the aggregation induced by the complex is not inhibited by inhibitors of adenosine diphosphate (ADP) or collagen induced aggregation, and is not accompanied by release of measureable amounts of serotonin or ADP. The potential clinical significance of the phenomenon is noted.


Blood ◽  
1975 ◽  
Vol 45 (3) ◽  
pp. 403-412 ◽  
Author(s):  
HJ Weiss

Ristocetin was used to study platelet aggregation in platelet-rich plasma and to assay the von Willebrand factor activity of factor VIII (VIII-VWF). Ristocetin-induced platelet aggregation (RIPA) was decreased in 13 of 18 patients with von Willebrand's disease (VWD) who had decreased plasma levels of VIII-VWF. The five patients with normal RIPA appeared to have mild VWD but did not constitute a separate subclass. RIPA was also abnormal in some patients with intrinsic platelet defects, but in no case was the defect corrected by normal plasma. The latter type of correction appears to be specific for VWD. Aspirin ingestion inhibited the second phase of RIPA (at low concentrations of ristocetin only) but did not affect the initial phase of aggregation or the level of VIII-VWF. We also studied a group of patients who had both abnormalities of the factor VIII complex and intrinsic platelet defects, such as impaired collagen-induced aggregation, as well. The findings in these patients and in those with typical von Willebrand's disease appear to comprise a spectrum of disorders (the von Willebrand syndrome) in which some abnormality of the factor VIII complex is associated with impaired platelet function. At present, ristocetin would appear to be a useful reagent for evaluating patients with bleeding disorders and for studying patients with the von Willebrand syndrome.


1974 ◽  
Vol 31 (01) ◽  
pp. 133-141 ◽  
Author(s):  
Charles Warlow ◽  
Anne Corina ◽  
D Ogston ◽  
A. S Douglas

SummaryThe relationship between the rate of platelet aggregation and the time interval after venepuncture has been studied. Considerable changes in the rates of aggregation and disaggregation of platelets in citrated plasma take place between 30 and 120 minutes after venepuncture. There is a reduction in the rates of irreversible ADP-induced aggregation, the first and second phase of the double wave of ADP-induced aggregation, disaggregation after reversible ADP-induced aggregation, collagen-induced aggregation and the second phase of the double wave of adrenaline-induced aggregation. In contrast, the rate of the first wave of adrenaline-induced aggregation increases with time after venepuncture. 5-HT induced aggregation appears to be unaffected. These effects were not due to changes in the pH of the plasma. It is suggested that any attempt to quantify platelet aggregation during the comparison of groups of individuals, or in the study of the effect of anti-platelet drugs in single individuals must take into account the time interval between venepuncture and the measurement of platelet aggregation.


1979 ◽  
Author(s):  
B. Oppenheim ◽  
M.B.H. Youdim

Recently we have shown that 5′-adenylylimidodiphosphate (AIP), a structural analogue of ATP, causes a transient aggregation of human blood platelets similar to that produced by 5-hydroxytryptamine (5-HT) (Brit. J. Pharmacol. 1979, in press). In addition AIP strongly inhibits the second phase of aggregation induced by adrenaline (A), noradrenaline, ADP and irreversible 5-HT when such a response is obtained. However, it does not affect collagen response, indicating that AIP is an inhibitor of release I (i.e. release is reversible. Like 5-HT, the aggregation to AIP can be enhanced by pretreatment (30-60 sec.) with low (0.1-0.5 μM) non-aggregating concentrations of A, but without exhibiting a second phase of aggregation. The synergistic effect of A (but not isoproterenol, 10-100 μM) was also observed with ATP and ADP. ATP by itself does not produce an aggregation response but it causes a 5-HT like response after preincubation with A. The potentiating effects of A on aggregation responses are selectively prevented by phentolamine (10 μM) but not by proparanolol (10 μM). The results suggest an α-adrenergic mediated effect.


1984 ◽  
Vol 62 (3) ◽  
pp. 338-340
Author(s):  
J. J. F. Killackey ◽  
B. A. Killackey ◽  
I. Cerskus ◽  
R. B. Philp

A hydroperoxide compound structurally related to acetylsalicylic acid, 3-hydroperoxy-3-methylphthalide, inhibits both the first and second phases of adenosine diphosphate induced, biphasic, human platelet aggregation. This occurs over the same concentration range (0.05–0.5 mM) that acetylsalicylic acid inhibits second phase aggregation and the release reaction only. The complete inhibition of adenosine diphosphate induced aggregation is a unique pharmacological property for an acetylsalicylic-acid-like compound.


1996 ◽  
Vol 315 (3) ◽  
pp. 939-945 ◽  
Author(s):  
Hana S. SUIDAN ◽  
Kenneth J. CLEMETSON ◽  
Marianne BROWN-LUEDI ◽  
Simone P. NICLOU ◽  
Jeannine M. CLEMETSON ◽  
...  

Granzyme A is a serine protease stored in cytoplasmic granules of cytotoxic and helper T lymphocytes. This protease seems to elicit thrombin receptor-mediated responses in neural cells, thereby triggering neurite retraction and reversal of astrocyte stellation. Here we report that granzyme A does not cause platelet aggregation even at concentrations that are more than two orders of magnitude higher than the EC50 for granzyme A in causing morphological changes in neural cells. However, granzyme A blocks thrombin-induced platelet aggregation in a dose-dependent manner without affecting the response to either ADP or to the peptide agonist of the thrombin receptor SFLLRN that corresponds in sequence to the tethered ligand domain. The inability of granzyme A to cause aggregation and its inhibition of thrombin-induced aggregation were seen in platelets from man, rat and mouse. Granzyme A does not affect the catalytic activity of thrombin in cleaving a chromogenic substrate or the macromolecular substrate fibrinogen. However, granzyme A does seem to cleave the thrombin receptor on platelets to produce a weak Ca2+ signal and reduce the response to subsequent challenge with thrombin, but does not induce a signal in thrombin-stimulated platelets. It is proposed that granzyme A interacts with the thrombin receptor found on platelets in a manner that is insufficient to cause aggregation, but sufficient to compete with thrombin for the receptor. These results suggest that granzyme A cleaves the thrombin receptor at a rate that is insufficient to cause platelet aggregation but is sufficient to cause morphological changes in neural cells. Furthermore, these observations demonstrate that granzyme A release occurring during immune responses within blood vessels would not directly cause platelet aggregation.


Sign in / Sign up

Export Citation Format

Share Document