scholarly journals Genetic analysis of developmental mechanisms in Hydra. II. Isolation and characterization of an interstitial cell-deficient strain

1978 ◽  
Vol 29 (1) ◽  
pp. 35-52 ◽  
Author(s):  
T. Sugiyama ◽  
T. Fujisawa

A mutant strain (nf-I) of Hydra magnipapillata was isolated that contained no interstitial cells, nerve cells or nematocytes. This strain appeared spontaneously in a sexually inbred clone of hydra, and it was recognized by its inability to eat. When force-fed, however, it grew, multiplied by budding and regenerated. In this and in many other respects, nf-I was very similar to the interstitial cell-deficient strain produced by Campbell (1976) by means of colchicine. A chimera strain was produced by the reintroduction of interstitial cells from another strain into nf-I. The properties of nf-I, the chimera and other related strains were examined, and the possible roles that the interstitial cells and the nerve cells play in growth and morphogenesis of hydra are discussed.

Development ◽  
1977 ◽  
Vol 42 (1) ◽  
pp. 65-77
Author(s):  
Tsutomu Sugiyama ◽  
Toshitaka Fujisawa

Mutant hydra strains showing abnormal development can be isolated through sexual inbreeding of wild hydra. One such mutant strain, called reg-16, regenerates tentacles very poorly following amputation of the head and foot. Tentacle regeneration, however, is significantly enhanced by subdividing the regenerating fragment longitudinally. Lateral tissue implants that induce head formation in wild-type hydra either regress or induce foot formation in reg-16 polyps. These results suggest that regeneration deficiency in reg-16 is due to a defective polarity gradient. A chimaeric strain of hydra was produced by combining interstitial cells (and thus their differentiation products, nerve cells and nematocytes) of reg-16 hydra with epithelial cells of another strain which is capable of normal regeneration. The chimaeras regenerate normally, suggesting that the defect of reg-16 is not located in the interstitial or nerve cells.


1979 ◽  
Vol 35 (1) ◽  
pp. 1-15
Author(s):  
T. Sugiyama ◽  
T. Fujisawa

The homeostatic mechanisms that maintain constant cellular ratios in hydra tissue were studied using mutant and chimeric hydra strains. Mutants having abnormal cellular compositions are isolated through sexual inbreeding of wild hydra, as described in previous papers of this series. Chimeric hydra are produced by making use of a strain (nf-I) which lacks interstitial cells, nerve cells and nematocytes in its tissue. Reintroduction of interstitial cells from other strains (both normal and mutant) into nf-I leads to creation of chimeric strains having epithelial cell lineages from one strain (nf-I) and interstitial cell lineages from others. Analyses and comparisons of the cellular compositions of all these strains revealed that the numbers of nerve or interstitial cells in the chimeras were very similar to (statistically significantly correlated with) those in their interstitial cell donors. Since chimeras and their interstitial cell donors share the same interstitial cell lineages, this suggests that interstitial cells or their derivatives (nerves and nematocytes) play major roles in determining the nerve and interstitial cell levels in the hydra tissue. It is suggested that some form of homeostatic feedback mechanisms are probably involved in regulating the levels of these cell types.


1978 ◽  
Vol 32 (1) ◽  
pp. 215-232
Author(s):  
T. Sugiyama ◽  
T. Fujisawa

Chimeric hydra were produced by making use of a strain (nf-1) which lacks interstitial cells, nerve cells and nematocytes. This strain arises by spontaneous loss of interstitial cells from its parental strain (sf-1) (Sugiyama & Fujisawa, 1978). Reintroduction of interstitial cells from other strains into nf-1 leads to the creation of chimeric strains that consisted of epithelial cells derived from strain sf-1 and interstitial cells and their derivatives (nerves and nematocytes) from other strains. In chimeras, interstitial or epithelial cells apparently maintain very stable cell lineages; no indication was obtained that suggested interstitial cell differentiation into epithelial cells or dedifferentiation in the opposite direction during the long courses of chimera cultures (up to one year). Developmental characters of chimeras were examined and compared to those of the epithelial cell (sf-1) and the interstitial cell donors. Almost all of the chimera's characters examined (growth rate, budding rate, tentacle numbers, polyp size, regenerative capacity, etc.) closely resembled those of the epithelial cell donor, but not of the interstitial cell donors. This suggests that epithelial cells, rather than interstitial or nerve cells, are the primary determinant of most, if not all, of hydra developmental characters.


2009 ◽  
Vol 2 (S1) ◽  
pp. 7-9 ◽  
Author(s):  
Hyung Kee Cha ◽  
Hye Suck An ◽  
Jung Hwa Choi ◽  
Sukyung Kang ◽  
Jung Youn Park ◽  
...  

Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 515-522
Author(s):  
L P Wakem ◽  
F Sherman

Abstract Approximately 290 omnipotent suppressors, which enhance translational misreading, were isolated in strains of the yeast Saccharomyces cerevisiae containing the psi+ extrachromosomal determinant. The suppressors could be assigned to 8 classes by their pattern of suppression of five nutritional markers. The suppressors were further distinguished by differences in growth on paromomycin medium, hypertonic medium, low temperatures (10 degrees), nonfermentable carbon sources, alpha-aminoadipic acid medium, and by their dominance and recessiveness. Genetic analysis of 12 representative suppressors resulted in the assignment of these suppressors to 6 different loci, including the three previously described loci SUP35 (chromosome IV), SUP45 (chromosome II) and SUP46 (chromosome II), as well as three new loci SUP42 (chromosome IV), SUP43 (chromosome XV) and SUP44 (chromosome VII). Suppressors belonging to the same locus had a wide range of different phenotypes. Differences between alleles of the same locus and similarities between alleles of different loci suggest that the omnipotent suppressors encode proteins that effect different functions and that altered forms of each of the proteins can effect the same function.


2018 ◽  
Vol 28 (9) ◽  
pp. 1473-1481 ◽  
Author(s):  
Zongsheng Zou ◽  
Yunying Zhao ◽  
Tingzhou Zhang ◽  
Jiaxing Xu ◽  
Aiyong He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document