Genetic analysis of developmental mechanisms in hydra. VI. Cellular composition of chimera hydra

1979 ◽  
Vol 35 (1) ◽  
pp. 1-15
Author(s):  
T. Sugiyama ◽  
T. Fujisawa

The homeostatic mechanisms that maintain constant cellular ratios in hydra tissue were studied using mutant and chimeric hydra strains. Mutants having abnormal cellular compositions are isolated through sexual inbreeding of wild hydra, as described in previous papers of this series. Chimeric hydra are produced by making use of a strain (nf-I) which lacks interstitial cells, nerve cells and nematocytes in its tissue. Reintroduction of interstitial cells from other strains (both normal and mutant) into nf-I leads to creation of chimeric strains having epithelial cell lineages from one strain (nf-I) and interstitial cell lineages from others. Analyses and comparisons of the cellular compositions of all these strains revealed that the numbers of nerve or interstitial cells in the chimeras were very similar to (statistically significantly correlated with) those in their interstitial cell donors. Since chimeras and their interstitial cell donors share the same interstitial cell lineages, this suggests that interstitial cells or their derivatives (nerves and nematocytes) play major roles in determining the nerve and interstitial cell levels in the hydra tissue. It is suggested that some form of homeostatic feedback mechanisms are probably involved in regulating the levels of these cell types.

1978 ◽  
Vol 29 (1) ◽  
pp. 35-52 ◽  
Author(s):  
T. Sugiyama ◽  
T. Fujisawa

A mutant strain (nf-I) of Hydra magnipapillata was isolated that contained no interstitial cells, nerve cells or nematocytes. This strain appeared spontaneously in a sexually inbred clone of hydra, and it was recognized by its inability to eat. When force-fed, however, it grew, multiplied by budding and regenerated. In this and in many other respects, nf-I was very similar to the interstitial cell-deficient strain produced by Campbell (1976) by means of colchicine. A chimera strain was produced by the reintroduction of interstitial cells from another strain into nf-I. The properties of nf-I, the chimera and other related strains were examined, and the possible roles that the interstitial cells and the nerve cells play in growth and morphogenesis of hydra are discussed.


1978 ◽  
Vol 32 (1) ◽  
pp. 233-247
Author(s):  
B.A. Marcum ◽  
R.D. Campbell

Chimeric hydra were prepared by recombining epithelial and interstitial cells between 3 strains of hydra of different sizes (maxi, normal, and mini strains). The resulting chimeras generally resembled the epithelial cell parent more than the interstitial cell parent in size, budding rate, tentacle number, and form. This suggests that epithelial cells normally exert considerable influence over hydra morphogenesis. However, the chimeras show some differences ascribable to interstitial cell origin. Furthermore, the 3 original strains, when deprived of interstitial cells, lose their distinguishing size differences. Thus both epithelial and interstitial cells (or interstitial cell derivatives) mutually participate in hydra's development.


1978 ◽  
Vol 32 (1) ◽  
pp. 215-232
Author(s):  
T. Sugiyama ◽  
T. Fujisawa

Chimeric hydra were produced by making use of a strain (nf-1) which lacks interstitial cells, nerve cells and nematocytes. This strain arises by spontaneous loss of interstitial cells from its parental strain (sf-1) (Sugiyama & Fujisawa, 1978). Reintroduction of interstitial cells from other strains into nf-1 leads to the creation of chimeric strains that consisted of epithelial cells derived from strain sf-1 and interstitial cells and their derivatives (nerves and nematocytes) from other strains. In chimeras, interstitial or epithelial cells apparently maintain very stable cell lineages; no indication was obtained that suggested interstitial cell differentiation into epithelial cells or dedifferentiation in the opposite direction during the long courses of chimera cultures (up to one year). Developmental characters of chimeras were examined and compared to those of the epithelial cell (sf-1) and the interstitial cell donors. Almost all of the chimera's characters examined (growth rate, budding rate, tentacle numbers, polyp size, regenerative capacity, etc.) closely resembled those of the epithelial cell donor, but not of the interstitial cell donors. This suggests that epithelial cells, rather than interstitial or nerve cells, are the primary determinant of most, if not all, of hydra developmental characters.


2019 ◽  
Author(s):  
Megan M. Monsanto ◽  
Bingyan J. Wang ◽  
Zach R. Ehrenberg ◽  
Oscar Echeagaray ◽  
Kevin S. White ◽  
...  

AbstractBackgroundCellular therapy to treat heart failure is an ongoing focus of intense research and development, but progress has been frustratingly slow due to limitations of current approaches. Engineered augmentation of established cellular effectors overcomes impediments, enhancing reparative activity with improved outcomes relative to conventional techniques. Such ‘next generation’ implementation includes delivery of combinatorial cell populations exerting synergistic effects. Concurrent isolation and expansion of three distinct cardiac-derived interstitial cell types from human heart tissue, as previously reported by our group, prompted design of a three-dimensional (3D) structure that maximizes cellular interaction, allows for defined cell ratios, controls size, enables injectability, and minimizes cell losses upon delivery.MethodsThree distinct populations of human cardiac interstitial cells including mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), and c-Kit+ cardiac interstitial cells (cCICs) when cultured together spontaneously form scaffold-free 3D microenvironments termed CardioClusters. Biological consequences of CardioCluster formation were assessed by multiple assays including single cells RNA-Seq transcriptional profiling. Protective effects of CardioClusters in vitro were measured using cell culture models for oxidative stress and myocardial ischemia in combination with freshly isolated neonatal rat ventricular myocytes. Long-term impact of adoptively transferred CardioClusters upon myocardial structure and function in a xenogenic model of acute infarction using NODscid mice was assessed over a longitudinal time course of 20-weeks.ResultsCardioCluster design enables control over composite cell types, cell ratios, size, and preservation of structural integrity during delivery. Profound changes for biological properties of CardioClusters relative to constituent parental cell populations include enhanced expression of stem cell-relevant factors, adhesion/extracellular-matrix molecules, and cytokines. The CardioCluster 3D microenvironment maximizes cellular interaction while maintaining a more native transcriptome similar to endogenous cardiac cells. CardioCluster delivery improves cell retention following intramyocardial injection with preservation of long-term cardiac function relative to monolayer-cultured cells when tested in an experimental murine infarction model followed for up to 20 weeks post-challenge. CardioCluster-treated hearts show increases in capillary density, preservation of cardiomyocyte size, and reduced scar size indicative of blunting pathologic infarction injury.ConclusionsCardioClusters are a novel ‘next generation’ development and delivery approach for cellular therapeutics that potentiate beneficial activity and enhance protective effects of human cardiac interstitial cell mixed populations. CardioClusters utilization in this preclinical setting establishes fundamental methodologic and biologic insights, laying the framework for optimization of CardioCluster design to provide greater efficacy in cell-based therapeutic interventions intended to mitigate cardiomyopathic damage.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Nona Farbehi ◽  
Ralph Patrick ◽  
Aude Dorison ◽  
Munira Xaymardan ◽  
Vaibhao Janbandhu ◽  
...  

Besides cardiomyocytes (CM), the heart contains numerous interstitial cell types which play key roles in heart repair, regeneration and disease, including fibroblast, vascular and immune cells. However, a comprehensive understanding of this interactive cell community is lacking. We performed single-cell RNA-sequencing of the total non-CM fraction and enriched (Pdgfra-GFP+) fibroblast lineage cells from murine hearts at days 3 and 7 post-sham or myocardial infarction (MI) surgery. Clustering of >30,000 single cells identified >30 populations representing nine cell lineages, including a previously undescribed fibroblast lineage trajectory present in both sham and MI hearts leading to a uniquely activated cell state defined in part by a strong anti-WNT transcriptome signature. We also uncovered novel myofibroblast subtypes expressing either pro-fibrotic or anti-fibrotic signatures. Our data highlight non-linear dynamics in myeloid and fibroblast lineages after cardiac injury, and provide an entry point for deeper analysis of cardiac homeostasis, inflammation, fibrosis, repair and regeneration.


Development ◽  
1977 ◽  
Vol 42 (1) ◽  
pp. 65-77
Author(s):  
Tsutomu Sugiyama ◽  
Toshitaka Fujisawa

Mutant hydra strains showing abnormal development can be isolated through sexual inbreeding of wild hydra. One such mutant strain, called reg-16, regenerates tentacles very poorly following amputation of the head and foot. Tentacle regeneration, however, is significantly enhanced by subdividing the regenerating fragment longitudinally. Lateral tissue implants that induce head formation in wild-type hydra either regress or induce foot formation in reg-16 polyps. These results suggest that regeneration deficiency in reg-16 is due to a defective polarity gradient. A chimaeric strain of hydra was produced by combining interstitial cells (and thus their differentiation products, nerve cells and nematocytes) of reg-16 hydra with epithelial cells of another strain which is capable of normal regeneration. The chimaeras regenerate normally, suggesting that the defect of reg-16 is not located in the interstitial or nerve cells.


Development ◽  
1984 ◽  
Vol 80 (1) ◽  
pp. 155-173
Author(s):  
Jun Takano ◽  
Tsutomu Sugiyama

Chimaeric hydra strains were produced from a normal strain (105) and a naturally-occurring mutant strain (L4) which has a large polyp size, a low budding rate and a high head-inhibition potential. Various properties of the chimaeras were then examined and compared to those of the two parental strains. Hydra tissue consists of three cell lineages: the ectodermal epithelial, the endodermal epithelial and the interstitial cell lineages. Using the methods recently developed by Marcum & Campbell (1978b) and by Wanek & Campbell (1982), six chimaeric strains were produced which contained six different combinations of the three cell lineages from 105 and L4. Evidence obtained from the comparison of the chimaeras and their parental strains indicates that the ectodermal epithelial cell lineage in L4 is primarily responsible for the large polyp size and the low budding rate of this strain, whereas the endodermal epithelial cell lineage is largely, and the interstitial cell lineage is also partially, responsible for the high head-inhibition potential in L4. This suggests that the mechanisms determining the occurrence and location of bud formation and the mechanisms determining the inhibition potential levels are not related to each other (cf. Takano & Sugiyama, 1983; Bode & Bode, 1983). Evidence was also obtained which suggests that the levels of the head-activation and head-inhibition potentials in the chimaeras are determined independent of each other, apparently without the cross-catalytic relationship between them assumed in the Gierer-Meinhardt model (Gierer & Meinhardt, 1972; Meinhardt & Gierer, 1974).


2020 ◽  
Author(s):  
Zhenxing Yang ◽  
Ye Gao ◽  
Peilin Liu ◽  
Weisheng Jia ◽  
Zhenqiang Fang ◽  
...  

Abstract Backgrounds:The mechanism underlying bladder urination pathophysiologies has not been understood yet because the types of interstitial cells present in the bladder are still obscure. Results:Here, we classified the cell types in the bladder without bias using 10x genomics single-cell RNA-seq and identified 35,510 and 19,946 cells from human and rat bladder tissues, respectively. In addition to the major cell clusters including urothelial cells, smooth muscle cells, endothelial cells, neurons, and immune cells, three types of interstitial cells were identified in this study. Fibroblasts and myofibroblasts were shown to occupy large proportions of interstitial cells, located mainly between the epithelial strata and muscle strata. A new type of interstitial cell, Mki67+, which was found both in human and rat bladder tissues, may participate in bladder disease development. Conclusions:Our investigation thus lays the ground work for identifying the cell types in bladder tissues and provides potential clues to understand abnormal bladder functions.


2019 ◽  
Vol 67 (11) ◽  
pp. 825-844
Author(s):  
Eva K. Hejbøl ◽  
Mohammad A. Hajjaj ◽  
Ole Nielsen ◽  
Henrik D. Schrøder

There is a growing recognition that myogenic stem cells are influenced by their microenvironment during regeneration. Several interstitial cell types have been described as supportive for myoblasts. In this role, both the pericyte as a possible progenitor for mesenchymal stem cells, and interstitial cells in the endomysium have been discussed. We have applied immunohistochemistry on normal and pathological human skeletal muscle using markers for pericytes, or progenitor cells and found a cell type co-expressing CD10, CD34, CD271, and platelet-derived growth factor receptor α omnipresent in the endomysium. The marker profile of these cells changed dynamically in response to muscle damage and atrophy, and they proliferated in response to damage. The cytology and expression profile of the CD10+ cells indicated a capacity to participate in myogenesis. Both morphology and indicated function of these cells matched properties of several previously described interstitial cell types. Our study suggests a limited number of cell types that could embrace many of these described cell types. Our study indicate that the CD10+, CD34+, CD271+, and platelet-derived growth factor receptor α+ cells could have a supportive role in human muscle regeneration, and thus the mechanisms by which they exert their influence could be implemented in stem cell therapy.


Sign in / Sign up

Export Citation Format

Share Document