Oocyte maturation: aberrant post-fusion responses of the rabbit primary oocyte to penetrating spermatozoa

1979 ◽  
Vol 39 (1) ◽  
pp. 1-12
Author(s):  
M. Berrios ◽  
J.M. Bedford

Primary oocytes cannot be fertilized normally; they begin to develop this capacity as meiosis resumes. To elucidate the changes involved in acquisition of their fertilizability, rabbit primary oocytes displaying a germinal vesicle (GV oocytes) were placed in Fallopian tubes inseminated previously with spermatozoa, recovered 2–5 h later and examined by light and electron microscopy. At least 4 aspects of GV oocyte/sperm interaction were abnormal. Although the vestments and oolemma seem normally receptive to spermatozoa, fusion with the oolemma of the primary oocyte did not elicit exocytosis of cortical granules, and consequently multiple entry of spermatozoa into the ooplasm was common. Secondly, the GV oocyte cortex failed to achieve a normal englufment of the anterior part of the sperm head. It sank into the ooplasm capped by only a small rostral vesicle or left the stable inner acrosomal membrane as a patch in the oolemma. Only rarely then was there significant dispersion of the sperm chromatin, and this remained surrounded by nuclear envelope. The persistence of this envelope constitutes a further aberrant feature, for it disappears immediately in secondary oocytes and was absent in primary oocytes in which germinal vesicle breakdown had occurred. The results are discussed with particular reference to current ideas about male pronucleus formation.

2015 ◽  
Vol 27 (7) ◽  
pp. 1082 ◽  
Author(s):  
Maricy Apparicio ◽  
Giuliano Q. Mostachio ◽  
Tathiana F. Motheo ◽  
Aracelle E. Alves ◽  
Luciana Padilha ◽  
...  

The aim of this study was to evaluate the influence of different bi-phasic systems with gonadotrophins and steroids on in vitro maturation rates of oocytes obtained from bitches at different reproductive stages (follicular, luteal, anoestrous). In System A (control) oocytes were matured for 72 h in base medium (BM) with 10 IU mL–1 human chorionic gonadotrophin (hCG), 1 μg mL–1 progesterone (P4) and 1 μg mL–1 oestradiol (E2); in bi-phasic System B oocytes were matured for 48 h in BM with hCG and for 24 h in BM with P4; in bi-phasic System C oocytes were matured for 48 h in BM with hCG, P4 and E2, and for 24 h in BM with P4; in System D, oocytes were cultured in BM without hormonal supplementation. Data were analysed by ANOVA. There was a positive effect of the bi-phasic systems on germinal vesicle breakdown, metaphase I and metaphase II rates, irrespective of reproductive status (P < 0.05). Bi-phasic systems were also beneficial for cortical granule distribution (an indication of cytoplasmic maturation) and its relationship to nuclear status: 74.5% of the oocytes cultured in System B and 85.4% of those cultured in System C presented both nuclear and cytoplasmic maturation (P < 0.001). The stage of the oestrous cycle did not influence maturation rates.


Zygote ◽  
1996 ◽  
Vol 4 (2) ◽  
pp. 145-149 ◽  
Author(s):  
Nam-Hyung Kim ◽  
Billy N. Day ◽  
Hoon Taek Lee ◽  
Kil-Saeng Chung

SummaryIn this study we imaged integral changes in microfilament assembly and cortical granule distribution, and examined effects of microfilament inhibitor on the cortical granule distribution during oocyte maturation, parthenogenetic activation and in vitro fertilisation in the pig. The microfilament assembly and cortical granule distribution were imaged with fluorescent-labelled lectin and rhodamine-labelled phalloidin under laser scanning confocal microscopy. At the germinal vesicle stage, cortical granule organelles were located around the cell cortex and were present as a relatively wide area on the oolemma. Microfilaments were also observed in a wide uniform area around the cell cortex. Following germinal vesicle breakdown, microfilaments concentrated in the condensed chromatin and cortical granules were observed in the cortex. Treatment with cytochalasin B inhibited microfilament polymerisation and prevented movement of cortical granules to the cortex. Cortical granule exudation following sperm penetration was evenly distributed in the entire perivitelline space. These results suggest that the microfilament assembly is involved in the distribution, movement and exocytosis of cortical granules during maturation and fertilisation.


Reproduction ◽  
2005 ◽  
Vol 130 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Luisa Gioia ◽  
Barbara Barboni ◽  
Maura Turriani ◽  
Giulia Capacchietti ◽  
Maria Gabriella Pistilli ◽  
...  

The present experiments compared the ability of pig oocytes matured eitherin vivoorin vitroto structurally reorganize the penetrated sperm chromatin into male pronucleus (PN) and to carry out, in parallel, the epigenetic processes of global chromatin methylation and acetylation, 12–14 h afterin vitrofertilization (IVF). In addition, PN distribution of histone deacetylase (HDAC), a major enzyme interfacing DNA methylation and histone acetylation, was investigated. The ability of the oocyte to operate an efficient block to polyspermy was markedly affected by maturation. The monospermic fertilization rate was significantly higher forin vivothan forin vitromatured (IVM) oocytes(P< 0.01) which, furthermore, showed a reduced ability to transform the chromatin of penetrated sperm into male PN(P< 0.01). Indirect immunofluorescence analysis of global DNA methylation, histone acetylation and HDAC distribution (HDAC-1, -2 and -3), carried out in monospermic zygotes that reached the late PN stage, showed that IVM oocytes also had a reduced epigenetic competence. In fact, while in about 80% ofin vivomatured and IVF oocytes the male PN underwent a process of active demethylation and showed a condition of histone H4 hyperacetylation, only 40% of IVM/IVF zygotes displayed a similar PN remodelling asymmetry. Oocytes that carried out the first part of maturationin vivo(up to germinal vesicle breakdown; GVBD) and then completed the processin vitro, displayed the same PN asymmetry as oocytes matured entirelyin vivo. A crucial role of HDAC in the establishment of PN acetylation asymmetry seems to be confirmed by the use of HDAC inhibitors as well as by the abnormal distribution of the enzyme between the two PN in IVM zygotes. Collectively, these data demonstrated that some pig IVM oocytes fail to acquire full remodelling competence which is independent from their ooplasmic ability to morphologically reorganize the sperm nucleus into PN.


Development ◽  
1997 ◽  
Vol 124 (9) ◽  
pp. 1845-1850
Author(s):  
L.K. Berg ◽  
G.M. Wessel

Cortical granules are secretory vesicles poised at the cortex of an egg that, upon stimulation by sperm contact at fertilization, secrete their contents. These contents modify the extracellular environment and block additional sperm from reaching the egg. The role of cortical granules in blocking polyspermy is conserved throughout much of phylogeny. In the sea urchin, cortical granules accumulate throughout the cytoplasm during oogenesis, but in mature eggs the cortical granules are attached to the plasma membrane, having translocated to the cortex at some earlier time. To study the process of cortical granule translocation to the cell surface we have devised a procedure for maturation of sea urchin oocytes in vitro. Using this procedure, we examined the rate of oocyte maturation by observing the movement and breakdown of the germinal vesicle, the formation of polar bodies and the formation of the egg pronucleus. We find that oocyte maturation takes approximately 9 hours in the species used here (Lytechinus variegatus), from the earliest indication of maturation (germinal vesicle movement) to formation of a distinct pronucleus. We then observed the translocation of cortical granules in these cells by immunolocalization using a monoclonal antibody to hyalin, a protein packaged specifically in cortical granules. We found that the translocation of cortical granules in in vitro-matured oocytes begins with the movement of the germinal vesicle to the oocyte cell surface, and is 50% complete 1 hour after germinal vesicle breakdown. In the in vitro-matured egg, 99% of the cortical granules are at the cortex, indistinguishable from translocation in oocytes that mature in vivo. We have also found that eggs that mature in vitro are functionally identical to eggs that mature in vivo by four criteria. (1) The matured cells undergo a selective turnover of mRNA encoding cortical granule contents. (2) The newly formed pronucleus begins transcription of histone messages. (3) Cortical granules that translocate in vitro are capable of exocytosis upon activation by the calcium ionophore, A23187. (4) The mature egg is fertilizable and undergoes normal cleavage and development. In vitro oocyte maturation enables us to examine the mechanism of cortical granule translocation and other processes that had previously only been observed in static sections of fixed ovaries.


1972 ◽  
Vol 10 (2) ◽  
pp. 369-385 ◽  
Author(s):  
PATRICIA G. CALARCO ◽  
R. P. DONAHUE ◽  
D. SZOLLOSI

Germinal vesicle breakdown in mouse oocytes in vivo and in vitro has been examined by electron microscopy. In vitro oocytes were studied immediately after release from follicles and at various times (0.5-11 h) in culture. Approximately 30 min after oocyte release, chromatin condensation begins along the convoluted nuclear envelope (NE). Chromatin granules are common in all condensing chromosomes. Heterochromatin, visible from early condensation until chromosomes are of uniform density, often is observed near the kinetochores. The nucleolus breaks down after peripheral incorporation of separate nucleolus-associated bodies composed of 25-nm diameter fibrils. These bodies are later found free in the cytoplasm. As chromosome condensation progresses, the NE becomes highly convoluted, then discontinuous, finally forming NE doublets. Spindle formation begins with the appearance near the NE of small medium-dense areas from which microtubules emanate. No centrioles are present. Dark granules and mitochondria move centrally in the oocyte and surround the spindle. Peripheral cortical granules and large aggregations of multivesicular bodies are present at all stages. The Golgi apparatus is not well developed. Very little rough endoplasmic reticulum is present, although free ribosomal clusters are common. There are no significant ultrastructural differences between eggs maturing in vivo and in vitro.


Zygote ◽  
1995 ◽  
Vol 3 (3) ◽  
pp. 225-239 ◽  
Author(s):  
Frank J. Longo ◽  
Mark Woerner ◽  
Kazuyoshi Chiba ◽  
Motonori Hoshi

SummaryMaturation of the starfish oocyte cortex to produce an effective cortical granule reaction and fertilisation envelope is believed to develop in three phases: (1) pre-methyladenine (1-MA) stimulation; (2) post-1-MA stimulation, pregerminal vesicle breakdown; and (3) post-germinal vesicle breakdown. The present study was initiated to identify what each of these phases may encompass, specifically with respect to structures associated with the oocyte cortex, including cortical granules, microvilli and vitelline layer. 1-MA treatment brought about an orientation of cortical granules such that they became positioned perpendicular to the oocyte surface, and an ∼ 4-fold decrease in microvillar length. A-23187 activation of immature oocytes treated with (10 min; pregerminal vesicle breakdown) or without 1-MA resulted in a reduction in cortical granule number of 21% and 41%, respectively (mature oocytes underwent a 96% reduction in cortical granules). Elevation of the fertilisation envelope in both cases was significantly retarded compared with activated mature oocytes. In activated mature oocytes, the vitelline layer elevated 20.0 ± 5.4 μm from the egg's surface, whereas in immature oocytes treated with just A-23187 or with 1-MA (10 min) and A-23187, it lifted 0.35 ± 0.1 and 0.17 ± 0.04 μm, respectively. The fertilisation envelopes of activated (or fertilised) immature oocytes also differed morphologically from those of mature oocytes. In activated, immature oocytes, the fertilisation envelope was not uniform in its thickness and possessed thick and thin regions as well as fenestrations. Additionally, it lacked a complete electron-dense stratum that characterised the fertilisation envelopes of mature oocytes. The nascent perivitelline space of immature oocytes was also distinguished by the presence of numerous vesicles which appeared to be derived from microvilli. Differences in the morphology of cortices from activated (fertilised) and non-activated, immature and mature oocytes substantiate previous investigations demonstrating three phases of cortical maturation, and are consistent with physiological changes that occur during oocyte maturation, involving ionic conductance of the plasma membrane, establishment of slow and fast blocks to polyspermy and elevation of a fertilisation envelope.


Zygote ◽  
2014 ◽  
Vol 23 (4) ◽  
pp. 603-614 ◽  
Author(s):  
Maria Eugenia Ortiz ◽  
Ana Josefina Arias-Torres ◽  
Liliana Isabel Zelarayán

SummaryThere are no studies that document the production of prostaglandins (PGs) or their role in Rhinella arenarum oocyte maturation. In this study, we analysed the effect of arachidonic acid (AA) and prostaglandins (PGs) on maturation, activation and pronuclear formation in R. arenarum oocytes. Our results demonstrated that AA was capable of inducing maturation in time-dependent and dose-dependent manner. Arachidonic acid-induced maturation was inhibited by indomethacin. PGs from AA hydrolysis, such as prostaglandin F2α (PGF2α) and, to a lesser extent, PGE2, induced meiosis resumption. Oocyte maturation in response to PGF2α was similar to that produced by progesterone (P4). Oocyte response to PGE1 was scarce. Rhinella arenarum oocyte PGF2α-induced maturation showed seasonal variation. From February to June, oocytes presented low sensitivity to PGF2α. In following periods, this response increased until a maximum was reached during October to January, a close temporal correlation with oocyte response to P4 being observed. The effect of PGF2α on maturation was verified by analysing the capacity of oocytes to activate and form pronuclei after being injected with homologous sperm. The cytological analysis of activated oocytes demonstrated the absence of cortical granules in oocytes, suggesting that PGF2α induces germinal vesicle breakdown (GVBD) and meiosis resumption up to metaphase II. In turn, oocytes matured by the action of PGF2α were able to form pronuclei after fertilization in a similar way to oocyte maturated by P4. In microinjection of mature cytoplasm experiments, the transformation of pre-maturation promoting factor (pre-MPF) to MPF was observed when oocytes were treated with PGF2α. In summary, our results illustrated the participation of the AA cascade and its metabolites in maturation, activation and pronuclei formation in R. arenarum.


Development ◽  
2002 ◽  
Vol 129 (18) ◽  
pp. 4315-4325
Author(s):  
Gary M. Wessel ◽  
Sean D. Conner ◽  
Linnea Berg

Cortical granules exocytose after the fusion of egg and sperm in most animals, and their contents function in the block to polyspermy by creating an impenetrable extracellular matrix. Cortical granules are synthesized throughout oogenesis and translocate en masse to the cell surface during meiosis where they remain until fertilization. As the mature oocyte is approximately 125 μm in diameter (Lytechinus variegatus), many of the cortical granules translocate upwards of 60 μm to reach the cortex within a 4 hour time window. We have investigated the mechanism of this coordinated vesicular translocation event. Although the stimulus to reinitiate meiosis in sea urchin oocytes is not known, we found many different ways to reversibly inhibit germinal vesicle breakdown, and used these findings to discover that meiotic maturation and cortical granule translocation are inseparable. We also learned that cortical granule translocation requires association with microfilaments but not microtubules. It is clear from endocytosis assays that microfilament motors are functional prior to meiosis, even though cortical granules do not use them. However, just after GVBD, cortical granules attach to microfilaments and translocate to the cell surface. This latter conclusion is based on organelle stratification within the oocyte followed by positional quantitation of the cortical granules. We conclude from these studies that maturation promoting factor (MPF) activation stimulates vesicle association with microfilaments, and is a key regulatory step in the coordinated translocation of cortical granules to the egg cortex.


Reproduction ◽  
2006 ◽  
Vol 131 (4) ◽  
pp. 661-667 ◽  
Author(s):  
Xihe Li ◽  
Y Qin ◽  
Sandra Wilsher ◽  
W R Allen

Various types of cell cycle organization occur in mammals. In this study, centrosome changes during meiosis in horse oocytes, and first cell cycle organization following fertilization, parthenogenesis and nuclear transfer, were monitored. Cumulus oocyte complexes harvested from horse ovaries obtained from slaughtered mares were cultured in vitro. Meiotic oocytes of germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I and II (MI and MII) stages were selected at various set times during in vitro maturation. Embryos at the first cell cycle stage were generated by subjecting MII stage oocytes to fertilization by intracytoplasmic sperm injection (ICSI), parthenogenetic treatment or nuclear transfer. Centrosome changes during meiosis and the first cell cycle organization were detected by indirect immunofluorescent staining, using a mouse anti-α-tubulin antibody for microtubules and a rabbit anti-γ-tubulin antibody for centrosomes. These examinations showed that the centrosomes of the horse oocyte reorganize themselves from the beginning of GV stage to leave only PCM of γ-tubulin surrounding both poles of the MI and MII stage spindles. These MII oocytes can organize the separation of metaphase chromosomes during the first embryonic cell cycle by parthenogenetic treatment. When the MII oocytes were subjected to ICSI or nuclear transfer, one or two red-stained centrosomes of γ-tubulin were introduced by the fertilising spermatozoon or the donor cell which associated with the sperm chromatin in the fertilized embryos and with the donor cell chromatin and microtubules in the cloned embryos. This finding suggests that centrosomes are not an essential component in the formation of the metaphase spindle during meiotic maturation of horse oocytes, but they can be introduced from the spermatozoon or donor cell and are necessary for the organization of normal embryonic development.


2016 ◽  
Author(s):  
Jessica Sanders ◽  
Ethan Bateson ◽  
Yuansong Yu ◽  
Michail Nomikos ◽  
Antony Lai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document