Acid phosphatase localization in PAS-bodies of Gonyaulax

1981 ◽  
Vol 51 (1) ◽  
pp. 15-23
Author(s):  
R.E. Schmitter ◽  
A.J. Jurkiewicz

Periodic acid-Schiff staining, acid phosphatase localization, and yellow autofluorescence have been correlated with the PAS-body of Gonyaulax polyedra for the first time. PAS- staining and acid phosphatase activity are both correlated with the PAS-body of Gonyaulax tamarensis. These results that the PAS-body of these marine dinoflagellate algae functions in subcellular digestion.

1996 ◽  
Vol 74 (11) ◽  
pp. 1964-1973 ◽  
Author(s):  
M. Pekkarinen

Intramarsupial glochidia of Anodonta anatina (L.) and Pseudanodonta complanata (Rossmässler) were studied in southern Finland. Material staining positively with periodic acid – Schiff's reagent (PAS), neutral lipid reserves, and acid phosphatase activity have different distributions in the mantle of the two species. Moreover, the mucous covering of the mantle of the two glochidia behaves differently on critical-point drying. The presence of microvilli with alkaline phosphatase activity on the mantle surface and acid phosphatase activity in the mantle cells in both glochidia suggest that the mantle plays a role in nutrient uptake and digestion and possibly also in electrolyte uptake. The primordia of the stomach, digestive diverticula, and intestine, at least in A. anatina glochidia, contain neutral lipids and exhibit acid phosphatase activity: In A. anatina glochidia, a microvillous layer with alkaline phosphatase activity continues from the ventral walls of the lateral pits to the suspected kidney diverticula. In both glochidia, there may be three pairs of rudimentary ganglia, which do not stain with methylene blue. The eight ciliated sense organs of the glochidia are methylene blue- and PAS-positive and they exhibit succinate dehydrogenase and acid phosphatase activity. In each mantle lobe, the enveloping cell of the dorsal ciliary organ is interconnected with those of the ventral triad via a cellular fold or "tract," and the ciliated central cells of the organs send axons towards each other.


1971 ◽  
Vol 19 (12) ◽  
pp. 775-797 ◽  
Author(s):  
ANDRÉE TIXIER-VIDAL ◽  
RENÉE PICART

Structures demonstrating the presence of glycoproteins, acid phosphatase activity and OsO4 impregnation were localized by means of the electron microscope in duck and in quail pituitary cells. Two methods for the electron microscopic demonstration of glycoproteins were used: a chromic acid-phosphotungstic acid mixture on glycol-methacrylate-embedded tissues, and the periodic acid-thiocarbohydrazide-silver proteinate technique. Both methods showed glycoproteins in the following sites: ( a) the secretory granules in three types of cells (A, B, C) which are part of the seven different cells of the avian pituitary; ( b) the several kinds of dense bodies which are richer in reaction product than the secretory granules. A correlation with previous studies on similar species of birds is helpful in identifying each of the three positive types of cells as thyrotropic cell (A), prolactin cell (B) and gonadotropic cell (C). The presence of glycoproteins within the Golgi saccules (on condensing granules) was found with the periodic acid-thiocarbohydrazide-silver proteinate method in these gonadotropic cells only. In gonadotropic and thyrotropic cells, acid phosphatase activity is weak in the inner Golgi saccules and strong in the "Golgi Endoplasmic Reticulum Lysosomes" system, in the lysosomes, in the dense bodies and in the vacuolated dense bodies. The structures which are richest in glycoproteins are also those which have the most acid phosphatase activity. On the contrary, OsO4-stained structures in duck gonadotropic cells (nuclear pericisterna, rough endoplasmic reticulum, cisternae and outer Golgi saccules) have no glycoproteins or acid phosphatase activity.


Author(s):  
O. T. Minick ◽  
E. Orfei ◽  
F. Volini ◽  
G. Kent

Hemolytic anemias were produced in rats by administering phenylhydrazine or anti-erythrocytic (rooster) serum, the latter having agglutinin and hemolysin titers exceeding 1:1000.Following administration of phenylhydrazine, the erythrocytes undergo oxidative damage and are removed from the circulation by the cells of the reticulo-endothelial system, predominantly by the spleen. With increasing dosage or if animals are splenectomized, the Kupffer cells become an important site of sequestration and are greatly hypertrophied. Whole red cells are the most common type engulfed; they are broken down in digestive vacuoles, as shown by the presence of acid phosphatase activity (Fig. 1). Heinz body material and membranes persist longer than native hemoglobin. With larger doses of phenylhydrazine, erythrocytes undergo intravascular fragmentation, and the particles phagocytized are now mainly red cell fragments of varying sizes (Fig. 2).


1986 ◽  
Vol 64 (4) ◽  
pp. 875-884 ◽  
Author(s):  
Patricia Schulz ◽  
William A. Jensen

Ovules of Capsella bursa-pastoris at the dyad and tetrad stages of meiosis and at the megaspore and two-nucleate stages of the gametophyte were studied with the electron microscope. The cells of the dyad and tetrad are separated by aniline blue fluorescent cross walls and receive all types of organelles and autophagic vacuoles that were present in the meiocyte. Autophagic vacuoles enclose ribosomes and organelles and show reaction product for acid phosphatase. Autophagic vacuoles and some plastids are absorbed into the enlarging vacuoles of the growing megaspore. Other plastids appear to survive meiosis and there is no evidence for their de novo origin. Some mitochondria appear to degenerate in the enlarging megaspore but others look healthy and there is no evidence for the de novo origin of mitochondria. The nucleolus of the developing megaspore becomes very large and the cytoplasm is extremely dense with ribosomes. The cell wall is thickened by an electron-translucent, periodic acid – Schiff negative, aniline blue fluorescent material and contains plasmodesmata that link the megaspore with the nucellus. The plasmalemma of the growing megaspore produces microvilluslike extensions into this wall that disappear with the formation of the two-nucleate gametophyte. Plasmodesmata disappear from the cell wall at the four-nucleate stage.


2008 ◽  
Vol 39 (6) ◽  
pp. 627-634 ◽  
Author(s):  
Tatiana Salles de Souza Malaspina ◽  
Célio Xavier dos Santos ◽  
Ana Paula Campanelli ◽  
Francisco Rafael Martins Laurindo ◽  
Mari Cleide Sogayar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document