A Note on Synaptic Structure of the Retina of Octopus Vulgaris

1970 ◽  
Vol 7 (1) ◽  
pp. 203-215
Author(s):  
E. G. GRAY

Electron microscopy of the octopus retina shows that both types of synapse (formed by the visual cell collaterals and the efferents respectively) have synaptic membrane specializations with associated aggregations of synaptic vesicles--features usually regarded as indicative of synaptic contact. These have hitherto been considered as absent from the octopus retina. Other details of the retinal synapses are described and in addition the grouped microtubules in the initial portions of the optic axons are seen to have in association a regular pattern of micro-filaments.

1970 ◽  
Vol 7 (1) ◽  
pp. 189-201
Author(s):  
E. G. GRAY

Electron microscopy of the vertical lobe of octopus brain shows that the synaptic knobs of axons with perikarya in the median superior frontal lobe have synaptic vesicles, approximately 28% of which are dense-cored (or granulated). In contrast, the endings of the amacrine neurons in the vertical lobe and the endings in the retina and optic lobe, both of which are derived from the retinal visual cells, have only agranular synaptic vesicles. The Golgi apparatuses of the median superior frontal perikarya have vesicles, approximately 4.3% of which are granulated. The amacrine Golgi apparatuses have 1.5% granulated vesicles. The visual cell Golgi apparatuses have virtually no dense-cored vesicles, only agranular ones. The question of the formation of dense-cored and agranular synaptic vesicles at the Golgi apparatus and their subsequent transport to the terminals are related to these observations.


Each optic nerve contains several bundles of axons. The axons have their surface membranes directly apposed and the bundles lie in troughs of the elongated Schwann cells. The axons have pronounced varicosities along their length. The axons enter the optic lobe and run between the granule cells to synapse in the plexiform zone. The granule cells are small neurons. Their cytoplasmic organelles include endoplasmic reticulum, ribosomes, agranular reticulum and of special interest, oval or spherical bodies with a lamellated cortex and granular medulla. The elongated varicose presynaptic bags of the optic axons contain mitochondria in the proximal region, numerous synaptic vesicles and, sometimes, neurofilaments. Below the mitochondrial zone, synaptic contacts are made with small spines invaginated into the bags. The spines probably originate from the trunks of the granule cells. Tunnel fibres that are probably trunks of the outer granule cells, run through channels in the synaptic bags.


1964 ◽  
Vol 21 (1) ◽  
pp. 87-103 ◽  
Author(s):  
E. G. Gray ◽  
J. Z. Young

The well known type of synapse between a presynaptic process containing vesicles and a "clear" postsynaptic process can be commonly observed in the various lobes of the brain of Octopus. The presynaptic vesicles are aggregated near regions of the synaptic membranes which show specialisation and asymmetric "thickening" indicating functional polarisation, and here chemical transmission is presumed to take place. In addition, in the vertical lobe a very interesting serial arrangement of synaptic contacts occurs. Presynaptic bags, formed from varicosities of fibres from the superior frontal lobe, contact the trunks of amacrine cells in the manner just described. The trunks, however, although apparently postsynaptic are themselves packed with synaptic vesicles. The trunks, in turn, make "presynaptic" contacts with clear spinous processes of other neurons of yet undetermined origin. Typical polarised membrane specialisations occur at the contact regions. The trunk vesicles aggregated closest to the contact regions have a shell of particles round their walls. At present, there is no way of telling whether the membrane conductance to the various ions is differently affected at either of the transmission sites, and, if an inhibitory mechanism is involved, whether it is of the presynaptic or postsynaptic variety.


Author(s):  
Charles A. Stirling

The lateral giant (LG) to motor giant (MoG) synapses in crayfish (Procambarus clarkii) abdominal ganglia are the classic electrotonic synapses. They have previously been described as having synaptic vesicles and as having them on both the pre- and postsynaptic sides of symmetrical synaptic junctions. This positioning of vesicles would make these very atypical synapses, but in the present work on the crayfish Astacus pallipes the motor giant has never been found to contain any type of vesicle at its synapses with the lateral giant fiber.The lateral to motor giant fiber synapses all occur on short branches off the main giant fibers. Closely associated with these giant fiber synapses are two small presynaptic nerves which make synaptic contact with both of the giant fibers and with their small branches.


1956 ◽  
Vol 2 (3) ◽  
pp. 307-318 ◽  
Author(s):  
Eduardo De Robertis ◽  
Carlos M. Franchi

The submicroscopic organization of the rod and cone synapses of the albino rabbit has been investigated with the use of the electron microscope. The most common rod synapse consists of an enlarged expansion of the rod fiber (the so called spherule) into which the dendritic postsynaptic fiber of the bipolar cell penetrates and digitates. The membrane surrounding the terminal consists of a double layer, the external of which is interpreted as belonging to the intervening glial cells. The synaptic membrane has a pre- and a postsynaptic layer with a total thickness of 180 to 300 A. The presynaptic layer is frequently denser and is intimately associated with the adjacent synaptic vesicles. The synaptic membrane shows processes constituted by foldings of the presynaptic layer. The entire spherule is filled with synaptic vesicles varying in diameter between 200 and 650 A with a mean of 386 A. In addition, the spherule contains a few large vacuoles near the rod fiber, interpreted as endoplasmic reticulum, and a matrix in which with high resolution a fine filamentous material can be observed. The postsynaptic fiber is homogeneous and usually does not show synaptic vesicles. In animals maintained in complete darkness for 24 hours vesicles appear to accumulate near the synaptic membrane and its processes. After 9 days there is a sharp decrease in size of the synaptic vesicles. A special rod synapse in which the dendritic postsynaptic expansion penetrates directly into the rod cell body has been identified. In line with Cajal's classification this type of synapse could be considered as a somatodendritic one. The cone synapse has a much larger terminal with a more complex relationship with the postsynaptic fiber. However, the same components recognized in the rod synapse can be observed. In animals maintained for 9 days in complete darkness there is also a considerable diminution in size of the synaptic vesicles.


Parasitology ◽  
1973 ◽  
Vol 67 (3) ◽  
pp. 307-314 ◽  
Author(s):  
I. K. Barker

Duodenal mucosae of uninfected lambs and lambs inoculated at least 16 days earlier with 85000–140000 Trichostrongylus colubriformis larvae were examined with the scanning electron microscope. Normal duodenum had tall spatulate villi with surface folds upon which goblet cells and a regular pattern of hexagonal enterocytes were seen. Micro villi on normal enterocytes were closely packed and imparted a granular surface texture. In heavily infected areas of gut the villi were atrophic, the mucosa sometimes being composed of irregular masses and ridges, with crypt mouths, often surrounded by collars of cells, opening into the surface. More severely affected mucosae were flat, with protuberant collars of cells surrounding crypt mouths. There were rounded bodies, interpreted as sloughing enterocytes, or inflammatory cells, on the mucosal surface. Apices of enterocytes were domed and microvilli were sparse and irregular. Micro-organisms were numerous on cell surfaces. Nematodes were located in sinuous thin-walled tunnels in the epithelium. The mucosal microtopography is compared with that of coeliac disease of humans, nippostrongylosis in rats and with villus atrophy in pigs.


Author(s):  
Peggy Mason

The biochemical and physiological processes of neurotransmitter release from an active zone, a specialized region of synaptic membrane, are examined. Synaptic vesicles containing neurotransmitters are docked at the active zone and then primed for release by SNARE complexes that bring them into extreme proximity to the plasma membrane. Entry of calcium ions through voltage-gated calcium channels triggers synaptic vesicle fusion with the synaptic terminal membrane and the consequent diffusion of neurotransmitter into the synaptic cleft. Release results when the fusion pore bridging the synaptic vesicle and plasma membrane widens and neurotransmitter from the inside of the synaptic vesicle diffuses into the synaptic cleft. Membrane from the active zone membrane is endocytosed, and synaptic vesicle proteins are then reassembled into recycled synaptic vesicles, allowing for more rounds of neurotransmitter release.


Although much is known about the structural organization and connexions of the various lobes of the octopus brain from light microscopy, this is the first attempt at a detailed analysis of one of the lobes— the vertical lobe, with the electron microscope. The vertical lobe consists of five lobules. The median superior frontal (MSF) axons enter each lobule from the MSF lobe. The MSF axons contain both microtubules and neurofilaments. The varicosities of the MSF axons contain both agranular and dense-cored vesicles and synapse with trunks of the amacrine cells. These trunks run together in bundles termed amacrine tracts into the centres of the lobules. The amacrine trunks contain microtubules but no neurofilaments. The trunks contain large and small agranular synaptic vesicles and synapse with what are in all probability branches of the trunks of the large cells. These trunks contain microtubules but no neurofilaments. They run out through the bases of the lobules probably without forming synaptic contacts within the lobule. Fibres signalling ‘pain’ (nocifensor) enter the lobules from below. They can be recognized by their content of neurofilaments. Their terminals contain numerous very small synaptic vesicles and a few larger and dense-cored ones. These ‘pain’ fibres appear to synapse mostly with processes of the large cells. J. Z. Young has shown that the vertical lobe is especially concerned with the integrative action of the visual system, linked with the chemo-tactile system. Electron microscopy supports Young’s suggestion that the superior frontal and interconnected vertical lobe systems constitute a loop which could sustain a positive feed-back mechanism (MSF —> amacrine -> large cell -> lateral superior frontal -> MSF) while the ‘pain’ (nocifensor) input could exert a suppressor (inhibitory) effect on the loop by its action on the large cells.


1955 ◽  
Vol 1 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Eduardo D. P. De Robertis ◽  
H. Stanley Bennett

Electron micrographs are presented of synaptic regions encountered in sections of frog sympathetic ganglia and earthworm nerve cord neuropile. Pre- and postsynaptic neuronal elements each appear to have a membrane 70 to 100 A thick, separated from each other over the synaptic area by an intermembranal space 100 to 150 A across. A granular or vesicular component, here designated the synaptic vesicles, is encountered on the presynaptic side of the synapse and consists of numerous oval or spherical bodies 200 to 500 A in diameter, with dense circumferences and lighter centers. Synaptic vesicles are encountered in close relationship to the synaptic membrane. In the earthworm neuropile elongated vesicles are found extending through perforations or gaps in the presynaptic membrane, with portions of vesicles appearing in the intermembranal space. Mitochondria are encountered in the vicinity of the synapse, and in the frog, a submicroscopic filamentary component can be seen in the presynaptic member extending up to the region where the vesicles are found, but terminating short of the synapse itself.


Sign in / Sign up

Export Citation Format

Share Document