Locomotion and Coelomic Pressure in Lumbricus Terrestris L

1969 ◽  
Vol 51 (1) ◽  
pp. 47-58
Author(s):  
M. K. SEYMOUR

1. Crawling movement and burrowing of Lumbricus terrestris (L.) have been studied by continuous recording of internal pressure, direct observation and analysis of cine film. Frequency of locomotory waves is from 5 to 20 per min. Timing of protrusion of setae and of backward slip of points d'appui in locomotion have been observed and recorded. 2. In normal locomotion elongation of segments by contraction of the circular muscles gives rise to a discrete pressure pulse; shortening, by contraction of the longitudinal muscles, may or may not do so, depending on the position of the segment in the worm and the relative extent of contraction of the longitudinal and circular muscles. 3. Consideration of crawling and burrowing pressure records emphasizes the importance of (a) the circular muscles in extension of the head end in crawling and in initial penetration of the soil, and (b) the longitudinal muscles during burrowing, in dilating the burrow and drawing in more posterior segments 4. Mean pressures at circular and longitudinal muscle contraction are 12 and 7 cm. H2O respectively. The highest pressure recorded was 75 cm. H2O and accompanied violent squirming with evident contraction of all the body wall muscles. Resting pressures, shown in the absence of organized movement, are low (mean 0.26 cm. H2O). In both resting and crawling negative pressures sometimes occur and these are considered in relation to the inherent stiffness of the body wall and to the septate condition. 5. Tension in the longitudinal and circular muscle layers of a worm developing 75 cm. H2O internal pressure are calculated to be 265 and 1323 g./cm2. respectively, demonstrating in this example that, relative to the circulars, the longitudinal muscles are understressed by a factor of 5. Mean locomotory L.M. and C.M. peak values yield tension values of only 25 and 212 g./cm. respectively, and these are clearly well within the worm's capacity.

1925 ◽  
Vol s2-69 (274) ◽  
pp. 245-290
Author(s):  
A. J. GROVE

During the sexual congress of L.terrestris, the co-operating worms become attached to one another in a head-to-tail position in such a way that segments 9-11 of one are opposed to the clitellum of the other, and vice versa. At these points the attachment between the worms is an intimate one, assisted by the secretion of the glands associated with the diverticula of the setal pores found in certain segments, and is reinforced by the mutual penetration of the setae into the opposed body-surfaces. There is also a slighter attachment between segment 26 of one and 15 of the other. Each worm is enclosed in a slime-tube composed of mucus secreted from the epidermis. The exchange of seminal fluid is a mutual one. The fluid issues from the apertures of the vasa deferentia in segment 15, and is conducted beneath the slime-tube in pit-like depressions in the seminal grooves, which extend from segment 15 to the clitellum on each side of the body, to the clitellum, where it accumulates in the space between the lateral surfaces of segments 9-11 of one worm and the clitellum of the other. Eventually it becomes aggregated into masses in the groove between segments 9 and 10, and 10 and 11, and passes thence into the spermathecae. The seminal groove and its pit-like depressions are brought into existence by special muscles lying in the lateral blocks of longitudinal muscles of the body-wall.


1970 ◽  
Vol 7 (1) ◽  
pp. 263-271
Author(s):  
P. J. MILL ◽  
M. F. KNAPP

The fine structure of the neuromuscular Junctions in the body wall muscles of the earthworm is described. The segmental nerves send branches into the muscle layers. Axons in the nerve branches contain numerous synaptic vesicles and contact is established between these axons and muscle fibres or muscle tails; the latter may extend for a considerable distance from the muscle fibre. The cleft between the axolemma and sarcolemma is 85-120 nm wide and contains basement membrane material. At intervals small aggregations of electron-dense material are attached to the axonal membrane and synaptic vesicles are associated with these. The sarcolemma bears rather larger masses of dense material and is also specialized extracellularly.


1966 ◽  
Vol 44 (1) ◽  
pp. 93-118
Author(s):  
E. R. TRUEMAN

1. Continuous recordings of the hydrostatic pressure in the coelom of Arenicola marina show a resting pressure of about 2 cm. of water in a non-burrowing worm. During burrowing a series of pressure peaks is produced and these gradually increase in amplitude up to 110 cm. as burrowing progresses. 2. The pressure peaks are of 2 sec. duration, occur at intervals of 5-7 sec., and for each there is a major contraction of the circular muscles followed by the shortening of the longitudinal muscles. The main power stroke in producing the high pressure is the contraction of the longitudinal muscles of most of the trunk segments. The sequence of muscular contractions and the phases of burrowing are considered. 3. The pressure is utilized at the anterior end of the worm both to aid passage through the sand and to anchor the head while the posterior segments are pulled into the burrow. 4. At maximum pressures the tension developed in the circular muscle of the body wall is estimated to be 3 kg./cm.2, while the resting pressure corresponds to less than 7% of this.


Author(s):  
Hugh Y. Elder

The polychaete Polyphysia crassa (Oersted) is unusual in possessing a well-developed body-wall connective-tissue layer which exceeds the combined thickness of the circular and longitudinal muscles. Both collagenous and elastic fibres are present in this layer. The collagen is organized as a loose three-dimensional lattice allowing longitudinal, circumferential or radial distension of the body wall and, as in other soft-bodied invertebrates, serves the functions of providing a base on which the muscles can act and of imposing limits to the extensibility of the system. The elastic fibres are organized as an apparently randomly oriented meshwork of stout fibres around the circular muscle blocks and are attached to both the circular and longitudinal muscles. Columns of elastic fibres extend radially from the supramuscular coarse meshwork through the ‘holes’ in the collagen lattice to the epidermal basement membrane. As the elastic columns extend outwards the fibres become finer and more numerous and flute out to give a wide area attachment to the epidermal basement membrane. The radial elastic columns are cross-linked by tangential elastic fibres. Although at any point the main collagen and elasticfibre bundles are oriented at right angles to one another, collagen fibres are invariably associated with the elastic fibres and the two fibre types form a single functionally inte-grated system. Polyphysia lives in flocculent, sublittoral muds and the burrowing mechanism employed involves a pronounced direct peristaltic wave of simultaneous circular and longitudinal muscle contraction which necessitates considerable radial thickening of the body wall. The functions of the elastic fibres appear to be to oppose the radial distension of the body wall which the collagen lattice permits and to control the folding of the cuticle and epidermis and the return of the collagen system after the passage of a peristaltic wave.


1960 ◽  
Vol s3-101 (54) ◽  
pp. 149-176
Author(s):  
R. B. CLARK ◽  
M. E. CLARK

Nephtys lacks circular body-wall muscles. The chief antagonists of the longitudinal muscles are the dorso-ventral muscles of the intersegmental body-wall. The worm is restrained from widening when either set of muscles contracts by the combined influence of the ligaments, some of the extrinsic parapodial muscles, and possibly, to a limited extent, by the septal muscles. Although the septa are incomplete, they can and do form a barrier to the transmission of coelomic fluid from one segment to the next under certain conditions, particularly during eversion of the proboscis. Swimming is by undulatory movements of the body but the distal part of the parapodia execute a power-stroke produced chiefly by the contraction of the acicular muscles. It is suspected that the extrinsic parapodial muscles, all of which are inserted in the proximal half of the parapodium, serve to anchor the parapodial wall at the insertion of the acicular muscles and help to provide a rigid point of insertion for them. Burrowing is a cyclical process involving the violent eversion of the proboscis which makes a cavity in the sand. The worm is prevented from slipping backwards by the grip the widest segments have on the sides of the burrow. The proboscis is retracted and the worm crawls forward into the cavity it has made. The cycle is then repeated. Nephtys possesses a unique system of elastic ligaments of unusual structure. The anatomy of the system is described. The function of the ligaments appears to be to restrain the body-wall and parapodia from unnecessary and disadvantageous dilatations during changes of body-shape, and to serve as shock-absorbers against the high, transient, fluid pressures in the coelom, which are thought to accompany the impact of the proboscis against the sand when the worm is burrowing. From what is known of its habits, Nephtys is likely to undertake more burrowing than most other polychaetes.


1979 ◽  
Vol 82 (1) ◽  
pp. 273-280
Author(s):  
B. S. WONG ◽  
DONALD M. MILLER ◽  
T. T. DUNAGAN

Body wall muscles of an acanthocephalan Macracanthorhynchus hirudinaceus were studied by means of scanning and light microscopy and intracellular recording of potentials. Three types of spontaneous potential changes were found: larger (L) potentials which usually exhibited overshoot and were as large as 65 mV; smaller symmetric (A) potentials approximately 15 mV in amplitude; and even smaller asymmetric (S) potentials which sometimes reached 10 mV. The potentials recorded depended upon the position of the electrode in the anterior-posterior, as well as the medialateral, axis. Tetrodotoxin eliminated L but not S potentials. Ouabain lengthened the time for depolarization of L potentials and depolarized the membrane potentials. It is suggested that the rete system activates the body wall muscles in Acanthocephala.


1954 ◽  
Vol s3-95 (30) ◽  
pp. 251-270
Author(s):  
G. P. WELLS

The mechanism of proboscis movement is analysed in detail in Arenicola marina L. and A. ecaudata Johnston, and discussed in relation to the properties of the hydrostatic skeleton. Proboscis activity is based on the following cycle of movements in both species. Stage I. The circular muscles of the body-wall and buccal mass contract; the head narrows and lengthens. Stage IIa. The circular muscles of the mouth and buccal mass relax; the gular membrane (or ‘first diaphragm’ of previous authors) contracts; the mouth opens and the buccal mass emerges. Stage IIb. The longitudinal muscles of the buccal mass and body-wall contract; the head shortens and widens and the pharynx emerges. Stage III. As Stage I. The two species differ anatomically and in their hydrostatic relationships. In ecaudata, the forward movement of body-fluid which extrudes and distends the proboscis is largely due to the contraction of the gular membrane and septal pouches. In marina, the essential mechanism is the relaxation of the oral region which allows the general coelomic pressure to extrude the proboscis. The gular membrane of marina contracts as that of ecaudata does, but its anatomy is different and it appears to be a degenerating structure as far as proboscis extrusion is concerned. Withdrawal of the proboscis may occur while the head is still shortening and widening in Stage IIb, or while it is lengthening and narrowing in Stage III. The proboscis is used both in feeding and in burrowing; in the latter case nothing enters through the mouth; the difference is largely caused by variation in the timing of withdrawal relative to the 3-stage cycle.


Development ◽  
1991 ◽  
Vol 111 (3) ◽  
pp. 667-681 ◽  
Author(s):  
P.Y. Goh ◽  
T. Bogaert

As part of a general study of genes specifying a pattern of muscle attachments, we identified and genetically characterised mutants in the mup-1 gene. The body wall muscles of early stage mup-1 embryos have a wild-type myofilament pattern but may extend ectopic processes. Later in embryogenesis, some body wall muscles detach from the hypodermis. Genetic analysis suggests that mup-1 has both a maternal and a zygotic component and is not required for postembryonic muscle growth and attachment. mup-1 mutants are suppressed by mutations in several genes that encode extracellular matrix components. We propose that mup-1 may encode a cell surface/extracellular matrix molecule required both for the positioning of body wall muscle attachments in early embryogenesis and the subsequent maintenance of these attachments to the hypodermis until after cuticle synthesis.


1991 ◽  
Vol 158 (1) ◽  
pp. 37-62 ◽  
Author(s):  
N. I. Syed ◽  
W. Winlow

1. The morphology and electrophysiology of a newly identified bilateral pair of interneurones in the central nervous system of the pulmonate pond snail Lymnaea stagnalis is described. 2. These interneurones, identified as left and right pedal dorsal 11 (L/RPeD11), are electrically coupled to each other as well as to a large number of foot and body wall motoneurones, forming a fast-acting neural network which coordinates the activities of foot and body wall muscles. 3. The left and right sides of the body wall of Lymnaea are innervated by left and right cerebral A cluster neurones. Although these motoneurones have only ipsilateral projections, they are indirectly electrically coupled to their contralateral homologues via their connections with L/RPeD11. Similarly, the activities of left and right pedal G cluster neurones, which are known to be involved in locomotion, are also coordinated by L/RPeD11. 4. Selective ablation of both neurones PeD11 results in the loss of coordination between the bilateral cerebral A clusters. 5. Interneurones L/RPeD11 are multifunctional. In addition to coordinating motoneuronal activity, they make chemical excitatory connections with heart motoneurones. They also synapse upon respiratory motoneurones, hyperpolarizing those involved in pneumostome opening (expiration) and depolarizing those involved in pneumostome closure (inspiration). 6. An identified respiratory interneurone involved in pneumostome closure (visceral dorsal 4) inhibits L/RPeD11 together with all their electrically coupled follower cells. 7. Both L/RPeD11 have strong excitatory effects on another pair of electrically coupled neurones, visceral dorsal 1 and right parietal dorsal 2, which have previously been shown to be sensitive to changes in the partial pressure of environmental oxygen (PO2). 8. Although L/RPeD11 participate in whole-body withdrawal responses, electrical stimulation applied directly to these neurones was not sufficient to induce this behaviour.


Sign in / Sign up

Export Citation Format

Share Document