The role of microfilaments in cytoplasmic streaming in Drosophila follicles

1986 ◽  
Vol 80 (1) ◽  
pp. 159-169 ◽  
Author(s):  
H.O. Gutzeit

During the last phase of oogenesis in Drosophila, nurse cell cytoplasm can be seen to be streaming into the growing oocyte when visualized in time-lapse films. This process can be reversibly inhibited by cytochalasins. The distribution of F-actin filaments in the nurse cells has been studied by staining with rhodamine-conjugated phalloidin. At the beginning of cytoplasmic streaming (stage 10B) increasingly thick bundles of microfilaments formed, many of which spanned the nurse cell cytoplasm from the cell membrane to the nuclear membrane. The association of F-actin with the nuclear membrane persisted when nurse cell nuclei were isolated mechanically. The experimental evidence suggests that microfilament contraction in the nurse cells leads to cytoplasmic streaming by pressure flow.

Development ◽  
1982 ◽  
Vol 67 (1) ◽  
pp. 101-111
Author(s):  
Herwigo Gutzeit ◽  
Roswitha Koppa

Cytoplasmic streaming in follicles of Drosophila has been analysed in vitro by means of time-lapse films. Late vitellogenic follicles develop normally in vitro as judged by morphological criteria. Furthermore, follicles (stage 10 and younger) which were cultured in vitro for the same length of time as follicles which were filmed, developed normally in vivo after injection into a host fly. The recorded cytoplasmic movements are, therefore, unlikely to be an in vitro artefact. At early vitellogenic stages (up to stage 9; King, 1970) no cytoplasmic streaming can be detected, but at stage 10A cytoplasmic movements are initiated within the oocyte. At stage 10B, when the nurse cells start degenerating, nurse cell cytoplasm can be seen to flow into the growing oocyte. At stage 11 a central stream of nurse-cell cytoplasm reaches the oocyte within a minute. The ooplasmic streaming is most rapid at stage 10B and stage 11 and only an oocyte cortex up to 7 μm thick remains stationary. Once the bulk of the nurse-cell cytoplasm has poured into the oocyte (stage 12) the cytoplasmic movement ceases, first in the nurse cells and later in the ooplasm. In mature oocytes no cytoplasmic streaming can be detected.


2016 ◽  
Vol 113 (34) ◽  
pp. E4995-E5004 ◽  
Author(s):  
Wen Lu ◽  
Michael Winding ◽  
Margot Lakonishok ◽  
Jill Wildonger ◽  
Vladimir I. Gelfand

Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule–microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants.


Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 279-288
Author(s):  
J. Bohrmann ◽  
H. Gutzeit

Charged cell constituents in polytrophic insect follicles are thought to be transported in the nurse cell-oocyte syncytium by way of electrophoresis. This concept, proposed by Woodruff & Telfer (1980) was based on electrophysiological data and microinjection of heterologous proteins using Hyalophora follicles. By microinjecting fluorescently labelled acidic and basic proteins into the nurse cells or oocyte of vitellogenic Drosophila follicles, we failed to obtain evidence for charge-dependent migration of these molecules. We have also analyzed the proteins of nurse cells and oocyte on isoelectric focusing gels, by means of two-dimensional gel electrophoresis, and by ion exchange chromatography to see if basic or acidic proteins accumulate in vivo in nurse cells and oocyte, respectively. For the bulk of the follicular proteins we found no accumulation. Further evidence against an electrophoretic transport system in Drosophila was obtained by estimating the intracellular pH from the colour of indicator dyes microinjected into the follicles; the results indicate that the pH in the nurse cell cytoplasm is lower than that in the ooplasm. According to the model developed for Hyalophora, electrophoretic transport would be favoured by high pH in the nurse cell cytoplasm.


Development ◽  
1986 ◽  
Vol 93 (1) ◽  
pp. 291-301
Author(s):  
Herwig O. Gutzeit ◽  
Erwin Huebner

The localization of F-actin (microfilaments) in the nurse cells of ovarian follicles has been studied in 12 different insect species by fluorescence microscopy after specifically staining F-actin with rhodamine-conjugated phalloidin. In the analysed species with polytrophic ovaries (Apis mellifica, Pimpla turionellae, Bradysia tritici, Ephestia kuehniella, Protophormia terraenovae) a dense F-actin network was found to be associated with the nurse cell membranes. Only in Protophormia were microfilament bundles seen to extend from the cell membrane into the nurse cell cytoplasm and in a few cases appeared to make contact with the nuclear membrane. In the analysed coleopteran species with telotrophic ovarioles (Strangalia melanura, Leptinotarsa decemlineata, Oryzaephilus surinamensis) the fluorescence was also concentrated at the nurse cell membranes only. However, in all analysed hemipteran species (Lygus pratensis, Calocoris affinis, Graphosoma lineatum, Euscelis plebejus) the microfilament pattern was very different: while the nurse cells stained only weakly, we always found a characteristic (in some species massive) microfilament network surrounding the trophic core, a central area in the germarium from where material is transported through the trophic cords into the oocytes. The observed differences in the microfilament patterns are likely to reflect different mechanisms for transporting macromolecules and organelles within the ovariole.


Development ◽  
1999 ◽  
Vol 126 (24) ◽  
pp. 5645-5657 ◽  
Author(s):  
N. Matova ◽  
S. Mahajan-Miklos ◽  
M.S. Mooseker ◽  
L. Cooley

Drosophila Quail protein is required for the completion of fast cytoplasm transport from nurse cells to the oocyte, an event critical for the production of viable oocytes. The abundant network of cytoplasmic filamentous actin, established at the onset of fast transport, is absent in quail mutant egg chambers. Previously, we showed that Quail is a germline-specific protein with sequence homology to villin, a vertebrate actin-regulating protein. In this study, we combined biochemical experiments with observations in egg chambers to define more precisely the function of this protein in the regulation of actin-bundle assembly in nurse cells. We report that recombinant Quail can bind and bundle filamentous actin in vitro in a manner similar to villin at a physiological calcium concentration. In contrast to villin, Quail is unable to sever or cap filamentous actin, or to promote nucleation of new actin filaments at a high calcium concentration. Instead, Quail bundles the filaments regardless of the calcium concentration. In vivo, the assembly of nurse-cell actin bundles is accompanied by extensive perforation of the nurse-cell nuclear envelopes, and both of these phenomena are manifestations of nurse-cell apoptosis. To investigate whether free calcium levels are affected during apoptosis, we loaded egg chambers with the calcium indicator Indo-1. Our observations indicate a rise in free calcium in the nurse-cell cytoplasm coincident with the permeabilization of the nuclear envelopes. We also show that human villin expressed in the Drosophila germline could sense elevated cytoplasmic calcium; in nurse cells with reduced levels of Quail protein, villin interfered with actin-bundle stability. We conclude that Quail efficiently assembles actin filaments into bundles in nurse cells and maintains their stability under fluctuating free calcium levels. We also propose a developmental model for the fast phase of cytoplasm transport incorporating findings presented in this study.


2011 ◽  
Vol 39 (6) ◽  
pp. 1719-1724 ◽  
Author(s):  
Mirjam Ketema ◽  
Arnoud Sonnenberg

The cytoskeleton is connected to the nuclear interior by LINC (linker of nucleoskeleton and cytoskeleton) complexes located in the nuclear envelope. These complexes consist of SUN proteins and nesprins present in the inner and outer nuclear membrane respectively. Whereas SUN proteins can bind the nuclear lamina, members of the nesprin protein family connect the nucleus to different components of the cytoskeleton. Nesprin-1 and -2 can establish a direct link with actin filaments, whereas nesprin-4 associates indirectly with microtubules through its interaction with kinesin-1. Nesprin-3 is the only family member known that can link the nuclear envelope to intermediate filaments. This indirect interaction is mediated by the binding of nesprin-3 to the cytoskeletal linker protein plectin. Furthermore, nesprin-3 can connect the nucleus to microtubules by its interactions with BPAG1 (bullous pemphigoid antigen 1) and MACF (microtubule–actin cross-linking factor). In contrast with the active roles that nesprin-1, -2 and -4 have in actin- and microtubule-dependent nuclear positioning, the role of nesprin-3 is likely to be more passive. We suggest that it helps to stabilize the anchorage of the nucleus within the cytoplasm and maintain the structural integrity and shape of the nucleus.


2010 ◽  
Vol 190 (4) ◽  
pp. 523-531 ◽  
Author(s):  
Ioannis P. Nezis ◽  
Bhupendra V. Shravage ◽  
Antonia P. Sagona ◽  
Trond Lamark ◽  
Geir Bjørkøy ◽  
...  

Autophagy is an evolutionarily conserved pathway responsible for degradation of cytoplasmic material via the lysosome. Although autophagy has been reported to contribute to cell death, the underlying mechanisms remain largely unknown. In this study, we show that autophagy controls DNA fragmentation during late oogenesis in Drosophila melanogaster. Inhibition of autophagy by genetically removing the function of the autophagy genes atg1, atg13, and vps34 resulted in late stage egg chambers that contained persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. The Drosophila inhibitor of apoptosis (IAP) dBruce was found to colocalize with the autophagic marker GFP-Atg8a and accumulated in autophagy mutants. Nurse cells lacking Atg1 or Vps34 in addition to dBruce contained persisting nurse cell nuclei with fragmented DNA. This indicates that autophagic degradation of dBruce controls DNA fragmentation in nurse cells. Our results reveal autophagic degradation of an IAP as a novel mechanism of triggering cell death and thereby provide a mechanistic link between autophagy and cell death.


2017 ◽  
Vol 1 (2) ◽  
pp. 155-158
Author(s):  
Samuela Cataldi ◽  
Andrea Lazzarini ◽  
Michela Codini ◽  
Giacomo Cascianelli ◽  
Alessandro Floridi ◽  
...  

Abstract Nuclear actin has been implicated in different nuclear functions. In this work, its localization in nuclear membrane, chromatin and nuclear lipid microdomains was investigated. The implication of sphingomyelin metabolism was studied. Nuclear membrane, chromatin and nuclear lipid microdomains were purified from hepatocyte nuclei and H35 human hepatoma cell nuclei. The presence of β-actin was analyzed with immunoblotting by using specific antibodies. Sphingomyelinase, sphingomyelin-synthase, and phosphatidylcholine-specific phospholipase C activities were assayed by using radioactivity sphingomyelin and phosphatidylcholine as substrate. The results showed that β-actin is localized in nuclear lipid microdomains and it increases in cancer cells. Evidence is provided to the difference of phosphatidylcholine and sphingomyelin metabolism in various subnuclear fractions of cancer cell nuclei compared with normal cells. Our findings show increase of sphingomyelin-synthase and inhibition of sphingomyelinase activity only in nuclear lipid microdomains. Nuclear lipid microdomains, constituted by phosphatidylcholine, sphingomyelin and cholesterol, play a role as platform for β-actin anchoring. Possible role of sphingomyelin metabolism in cancer cells is discussed.


2019 ◽  
Vol 7 (9) ◽  
pp. 307 ◽  
Author(s):  
Feng ◽  
Zhu ◽  
Xu ◽  
Yin ◽  
Hu

This article studies the sterilization effects of high-voltage pulsed electric field (PEF) of technology on filamentous fungi. A cell dielectric model was proposed based on the physical structure of filamentous fungi. Basic theories of the electromagnetic field were comprehensively applied, and the multiphysics field simulation software COMSOL Multiphysics was used for more detailed study. The effects of PEF treatment parameters and microbial characteristic parameters on the resulting cell membrane and nuclear membrane changes were simulated and analyzed. The results showed significant effects on the transmembrane voltage of the cell membrane and nuclear membrane from the electric field intensity, pulse duration, cell membrane thickness, superposition effect of the pulses. However, the amount of hyphae had little effect, and the number of cell nuclei and the thickness of the cell walls had almost no effect on the transmembrane voltage of the cell membranes and the nuclear membranes. The results provide theoretical support for applying high-voltage PEFs to kill fungi in practical applications.


2004 ◽  
Vol 78 (1) ◽  
pp. 7-16 ◽  
Author(s):  
T. Boonmars ◽  
Z. Wu ◽  
I. Nagano ◽  
T. Nakada ◽  
Y. Takahashi

AbstractThe nurse cell in the cyst of Trichinella spiralis comprises at least two kinds of cytoplasm, derived from muscle or satellite cells, as indicated by the pattern of staining using regular dye (haematoxylin and eosin, or toluidine blue), alkaline phosphatase (ALP) expression, acid phosphatase (ACP) expression and immunostaining with an anti-intermediate filament protein (desmin or keratin). Muscle cells undergo basophilic changes following a T. spiralis infection and transform to the nurse cells, accompanied by an increase in ACP activity and the disappearance of desmin. Satellite cells are activated, transformed and joined to the nurse cells but remain eosinophilic. The eosinophilic cytoplasm is accompanied by an increase in desmin and ALP expression but not an increase in ACP activity. Differences in the staining results for ALP or ACP suggest that the two kinds of cytoplasm have different functions. Trichinella pseudospiralis infection results in an increase of ACP activity at a later stage than T. spiralis. There is also a difference in the location pattern of ACP in the cyst of T. spiralis compared with T. pseudospiralis. In T. spiralis, ACP is diffused within the cell, but in T. pseudospiralis, ACP distribution is spotty corresponding to the location of the nucleus. Trichinella pseudospiralis infection is accompanied by a slight increase in ALP activity. Activated satellite cells following a T. pseudospiralis infection exhibit an increase in desmin expression. The present study therefore reveals that nurse cell cytoplasm differs between the two Trichinella species and between the two origins of cytoplasm in the cyst of T. spiralis.


Sign in / Sign up

Export Citation Format

Share Document