Time-lapse film analysis of cytoplasmic streaming during late oogenesis of Drosophila

Development ◽  
1982 ◽  
Vol 67 (1) ◽  
pp. 101-111
Author(s):  
Herwigo Gutzeit ◽  
Roswitha Koppa

Cytoplasmic streaming in follicles of Drosophila has been analysed in vitro by means of time-lapse films. Late vitellogenic follicles develop normally in vitro as judged by morphological criteria. Furthermore, follicles (stage 10 and younger) which were cultured in vitro for the same length of time as follicles which were filmed, developed normally in vivo after injection into a host fly. The recorded cytoplasmic movements are, therefore, unlikely to be an in vitro artefact. At early vitellogenic stages (up to stage 9; King, 1970) no cytoplasmic streaming can be detected, but at stage 10A cytoplasmic movements are initiated within the oocyte. At stage 10B, when the nurse cells start degenerating, nurse cell cytoplasm can be seen to flow into the growing oocyte. At stage 11 a central stream of nurse-cell cytoplasm reaches the oocyte within a minute. The ooplasmic streaming is most rapid at stage 10B and stage 11 and only an oocyte cortex up to 7 μm thick remains stationary. Once the bulk of the nurse-cell cytoplasm has poured into the oocyte (stage 12) the cytoplasmic movement ceases, first in the nurse cells and later in the ooplasm. In mature oocytes no cytoplasmic streaming can be detected.

1986 ◽  
Vol 80 (1) ◽  
pp. 159-169 ◽  
Author(s):  
H.O. Gutzeit

During the last phase of oogenesis in Drosophila, nurse cell cytoplasm can be seen to be streaming into the growing oocyte when visualized in time-lapse films. This process can be reversibly inhibited by cytochalasins. The distribution of F-actin filaments in the nurse cells has been studied by staining with rhodamine-conjugated phalloidin. At the beginning of cytoplasmic streaming (stage 10B) increasingly thick bundles of microfilaments formed, many of which spanned the nurse cell cytoplasm from the cell membrane to the nuclear membrane. The association of F-actin with the nuclear membrane persisted when nurse cell nuclei were isolated mechanically. The experimental evidence suggests that microfilament contraction in the nurse cells leads to cytoplasmic streaming by pressure flow.


Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 279-288
Author(s):  
J. Bohrmann ◽  
H. Gutzeit

Charged cell constituents in polytrophic insect follicles are thought to be transported in the nurse cell-oocyte syncytium by way of electrophoresis. This concept, proposed by Woodruff & Telfer (1980) was based on electrophysiological data and microinjection of heterologous proteins using Hyalophora follicles. By microinjecting fluorescently labelled acidic and basic proteins into the nurse cells or oocyte of vitellogenic Drosophila follicles, we failed to obtain evidence for charge-dependent migration of these molecules. We have also analyzed the proteins of nurse cells and oocyte on isoelectric focusing gels, by means of two-dimensional gel electrophoresis, and by ion exchange chromatography to see if basic or acidic proteins accumulate in vivo in nurse cells and oocyte, respectively. For the bulk of the follicular proteins we found no accumulation. Further evidence against an electrophoretic transport system in Drosophila was obtained by estimating the intracellular pH from the colour of indicator dyes microinjected into the follicles; the results indicate that the pH in the nurse cell cytoplasm is lower than that in the ooplasm. According to the model developed for Hyalophora, electrophoretic transport would be favoured by high pH in the nurse cell cytoplasm.


2002 ◽  
Vol 156 (4) ◽  
pp. 677-687 ◽  
Author(s):  
Andrew M. Hudson ◽  
Lynn Cooley

The Arp2/3 complex has been shown to dramatically increase the slow spontaneous rate of actin filament nucleation in vitro, and it is known to be important for remodeling the actin cytoskeleton in vivo. We isolated and characterized loss of function mutations in genes encoding two subunits of the Drosophila Arp2/3 complex: Arpc1, which encodes the homologue of the p40 subunit, and Arp3, encoding one of the two actin-related proteins. We used these mutations to study how the Arp2/3 complex contributes to well-characterized actin structures in the ovary and the pupal epithelium. We found that the Arp2/3 complex is required for ring canal expansion during oogenesis but not for the formation of parallel actin bundles in nurse cell cytoplasm and bristle shaft cells. The requirement for Arp2/3 in ring canals indicates that the polymerization of actin filaments at the ring canal plasma membrane is important for driving ring canal growth.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


2021 ◽  
Author(s):  
Shigehiro Hashimoto ◽  
Hiroki Yonezawa

Abstract A cell deforms and migrates on the scaffold under mechanical stimuli in vivo. In this study, a cell with division during shear stress stimulation has been observed in vitro. Before and after division, both migration and deformation of each cell were analyzed. To make a Couette-type shear flow, the medium was sandwiched between parallel disks (the lower stationary culture-disc and the upper rotating disk) with a constant gap. The wall shear stress (1.5 Pa < τ < 2 Pa) on the surface of the lower culture plate was controlled by the rotational speed of the upper disc. Myoblasts (C2C12: mouse myoblast cell line) were used in the test. After cultivation without flow for 24 hours for adhesion of the cells to the lower disk, constant τ was applied to the cells in the incubator for 7 days. The behavior of each cell during shear was tracked by time-lapse images observed by an inverted phase contrast microscope placed in the incubator. Experimental results show that each cell tends to divide after higher activities: deformation and migration. The tendency is remarkable at the shear stress of 1.5 Pa.


2010 ◽  
Vol 21 (4) ◽  
pp. 630-638 ◽  
Author(s):  
Yutaka Ogawa ◽  
Yoichi Miyamoto ◽  
Munehiro Asally ◽  
Masahiro Oka ◽  
Yoshinari Yasuda ◽  
...  

Npap60 (Nup50) is a nucleoporin that binds directly to importin α. In humans, there are two Npap60 isoforms: the long (Npap60L) and short (Npap60S) forms. In this study, we provide both in vitro and in vivo evidence that Npap60L and Npap60S function differently in nuclear protein import. In vitro binding assays revealed that Npap60S stabilizes the binding of importin α to classical NLS-cargo, whereas Npap60L promotes the release of NLS-cargo from importin α. In vivo time-lapse experiments showed that when the Npap60 protein level is controlled, allowing CAS to efficiently promote the dissociation of the Npap60/importin α complex, Npap60S and Npap60L suppress and accelerate the nuclear import of NLS-cargo, respectively. These results demonstrate that Npap60L and Npap60S have opposing functions and suggest that Npap60L and Npap60S levels must be carefully controlled for efficient nuclear import of classical NLS-cargo in humans. This study provides novel evidence that nucleoporin expression levels regulate nuclear import efficiency.


2018 ◽  
Vol 9 (4) ◽  
pp. 54 ◽  
Author(s):  
Pouriska Kivanany ◽  
Kyle Grose ◽  
Nihan Yonet-Tanyeri ◽  
Sujal Manohar ◽  
Yukta Sunkara ◽  
...  

Background: Corneal stromal cells (keratocytes) are responsible for developing and maintaining normal corneal structure and transparency, and for repairing the tissue after injury. Corneal keratocytes reside between highly aligned collagen lamellae in vivo. In addition to growth factors and other soluble biochemical factors, feedback from the extracellular matrix (ECM) itself has been shown to modulate corneal keratocyte behavior. Methods: In this study, we fabricate aligned collagen substrates using a microfluidics approach and assess their impact on corneal keratocyte morphology, cytoskeletal organization, and patterning after stimulation with platelet derived growth factor (PDGF) or transforming growth factor beta 1 (TGFβ). We also use time-lapse imaging to visualize the dynamic interactions between cells and fibrillar collagen during wound repopulation following an in vitro freeze injury. Results: Significant co-alignment between keratocytes and aligned collagen fibrils was detected, and the degree of cell/ECM co-alignment further increased in the presence of PDGF or TGFβ. Freeze injury produced an area of cell death without disrupting the collagen. High magnification, time-lapse differential interference contrast (DIC) imaging allowed cell movement and subcellular interactions with the underlying collagen fibrils to be directly visualized. Conclusions: With continued development, this experimental model could be an important tool for accessing how the integration of multiple biophysical and biochemical signals regulate corneal keratocyte differentiation.


1996 ◽  
Vol 149 (3) ◽  
pp. 503-508 ◽  
Author(s):  
T R Arnett ◽  
R Lindsay ◽  
J M Kilb ◽  
B S Moonga ◽  
M Spowage ◽  
...  

Abstract We investigated the actions of the trans- and cis-isomers of tamoxifen on the function of neonatal rat osteoclasts in vitro. Both compounds inhibited resorption pit formation by osteoclast-containing mixed bone cell cultures incubated for 24 h on cortical bone slices. Cell counts revealed that the inhibition was closely related to a cytotoxic effect, to which osteoclasts appeared particularly sensitive. Partial inhibition of resorption was seen in the presence of 2 μm trans-tamoxifen, whereas complete abolition of resorption and osteoclast viability occurred with 10 μm trans-tamoxifen; survival of mononuclear cells was unimpaired at either concentration. Cis-tamoxifen appeared to be slightly more toxic, with significant inhibitions of osteoclast viability and thus resorption pit formation at a concentration of 2 μm, and also of mononuclear cell numbers at 10 μm. Time-lapse video observations indicated that osteoclast death occurred rapidly (within 2–3 h) following exposure to 10 μm of either trans-tamoxifen or cis-tamoxifen. The morphological appearance of the dying cells was consistent with apoptosis. These results may help to explain the anti-resorptive action of tamoxifen seen in vivo in rats and humans. In contrast, oestradiol-17β consistently exerted no significant effects on resorption pit formation by rat osteoclasts over 24 h, even at grossly supraphysiological concentrations (up to 10 μm). Journal of Endocrinology (1996) 149, 503–508


Development ◽  
1986 ◽  
Vol 93 (1) ◽  
pp. 291-301
Author(s):  
Herwig O. Gutzeit ◽  
Erwin Huebner

The localization of F-actin (microfilaments) in the nurse cells of ovarian follicles has been studied in 12 different insect species by fluorescence microscopy after specifically staining F-actin with rhodamine-conjugated phalloidin. In the analysed species with polytrophic ovaries (Apis mellifica, Pimpla turionellae, Bradysia tritici, Ephestia kuehniella, Protophormia terraenovae) a dense F-actin network was found to be associated with the nurse cell membranes. Only in Protophormia were microfilament bundles seen to extend from the cell membrane into the nurse cell cytoplasm and in a few cases appeared to make contact with the nuclear membrane. In the analysed coleopteran species with telotrophic ovarioles (Strangalia melanura, Leptinotarsa decemlineata, Oryzaephilus surinamensis) the fluorescence was also concentrated at the nurse cell membranes only. However, in all analysed hemipteran species (Lygus pratensis, Calocoris affinis, Graphosoma lineatum, Euscelis plebejus) the microfilament pattern was very different: while the nurse cells stained only weakly, we always found a characteristic (in some species massive) microfilament network surrounding the trophic core, a central area in the germarium from where material is transported through the trophic cords into the oocytes. The observed differences in the microfilament patterns are likely to reflect different mechanisms for transporting macromolecules and organelles within the ovariole.


Sign in / Sign up

Export Citation Format

Share Document