Characterization of mitotic motors by their relative sensitivity to AMP-PNP

1989 ◽  
Vol 94 (3) ◽  
pp. 425-441
Author(s):  
G.M. Lee

The relative sensitivities of the motors for mitotic chromosome movements and saltatory motion were compared using a nonhydrolyzable analog of ATP, AMP-PNP. K+AMP-PNP was microinjected into PtKl cells at the time of nuclear envelope disassembly or at anaphase onset. To produce a dose-response curve for the effect of AMP-PNP on the rate of movement, the intracellular concentration of AMP-PNP in individual cells was measured. The volume injected into each cell was determined by adding dextrans labeled with Lucifer Yellow to the injection buffer, measuring the injected cell's fluorescence intensity, and then comparing the value with the fluorescence intensity of known volumes of Lucifer Yellow dextran solution. AMP-PNP produced a 50% inhibition of spindle elongation at 0.2 mM, of saltatory motion at 0.8 mM, and of chromosome movement at 8.6 mM. Prometaphase chromosome movement and anaphase chromosome-to-pole movement were similarly inhibited by AMP-PNP. Equivalent volumes of injection buffer containing 1% Lucifer Yellow dextran had no effect on chromosome movement, spindle elongation or saltatory motion. Although AMP-PNP occasionally produced shorter anaphase spindles, tubulin immunofluorescence revealed the presence of abundant spindle microtubules. Metaphase cells treated with very high cell concentrations of AMP-PNP had spindles with unusually long astral microtubules; thus microtubules are stabilized rather than broken down by AMP-PNP. In conclusion, spindle elongation is four times more sensitive than saltatory motion to AMP-PNP and 40 times more sensitive than chromosome movement. When these sensitivities to AMP-PNP are considered with the results from other studies, it can be concluded that the molecular motors for spindle elongation, chromosome movement and saltatory motion are different.

1996 ◽  
Vol 109 (5) ◽  
pp. 961-969 ◽  
Author(s):  
K.D. Brown ◽  
K.W. Wood ◽  
D.W. Cleveland

The kinesin-like protein CENP-E transiently associates with kinetochores following nuclear envelope breakdown in late prophase, remains bound throughout metaphase, but sometime after anaphase onset it releases and by telophase becomes bound to interzonal microtubules of the mitotic spindle. Inhibition of poleward chromosome movement in vitro by CENP-E antibodies and association of CENP-E with minus-end directed microtubule motility in vitro have combined to suggest a key role for CENP-E as an anaphase chromosome motor. For this to be plausible in vivo depends on whether CENP-E remains kinetochore associated during anaphase. Using Indian muntjac cells whose seven chromosomes have large, easily tracked kinetochores, we now show that CENP-E is kinetochore-associated throughout the entirety of anaphase-A (poleward chromosome movement), relocating gradually during spindle elongation (anaphase-B) to the interzonal microtubules. These observations support roles for CENP-E not only in the initial alignment of chromosomes at metaphase and in spindle elongation in anaphase-B, but also in poleward chromosome movement in anaphase-A.


1995 ◽  
Vol 131 (3) ◽  
pp. 721-734 ◽  
Author(s):  
Y Zhai ◽  
P J Kronebusch ◽  
G G Borisy

We have quantitatively studied the dynamic behavior of kinetochore fiber microtubules (kMTs); both turnover and poleward transport (flux) in metaphase and anaphase mammalian cells by fluorescence photoactivation. Tubulin derivatized with photoactivatable fluorescein was microinjected into prometaphase LLC-PK and PtK1 cells and allowed to incorporate to steady-state. A fluorescent bar was generated across the MTs in a half-spindle of the mitotic cells using laser irradiation and the kinetics of fluorescence redistribution were determined in terms of a double exponential decay process. The movement of the activated zone was also measured along with chromosome movement and spindle elongation. To investigate the possible regulation of MT transport at the metaphase-anaphase transition, we performed double photoactivation analyses on the same spindles as the cell advanced from metaphase to anaphase. We determined values for the turnover of kMTs (t1/2 = 7.1 +/- 2.4 min at 30 degrees C) and demonstrated that the turnover of kMTs in metaphase is approximately an order of magnitude slower than that for non-kMTs. In anaphase, kMTs become dramatically more stable as evidenced by a fivefold increase in the fluorescence redistribution half-time (t1/2 = 37.5 +/- 8.5 min at 30 degrees C). Our results also indicate that MT transport slows abruptly at anaphase onset to one-half the metaphase value. In early anaphase, MT depolymerization at the kinetochore accounted, on average, for 84% of the rate of chromosome movement toward the pole whereas the relative contribution of MT transport and depolymerization at the pole contributed 16%. These properties reflect a dramatic shift in the dynamic behavior of kMTs at the metaphase-anaphase transition. A release-capture model is presented in which the stability of kMTs is increased at the onset of anaphase through a reduction in the probability of MT release from the kinetochore. The reduction in MT transport at the metaphase-anaphase transition suggests that motor activity and/or subunit dynamics at the centrosome are subject to modulation at this key cell cycle point.


RSC Advances ◽  
2018 ◽  
Vol 8 (52) ◽  
pp. 30002-30011 ◽  
Author(s):  
Yueh-Chi Chung ◽  
Chien-Hsin Yang ◽  
Hao-Wen Zheng ◽  
Ping-Szu Tsai ◽  
Tzong-Liu Wang

Both the fluorescence intensity and quantum yield of all the nanocrystals are much enhanced after the CdSxSe1−xQD cores are coated with a ZnS shell.


1993 ◽  
Vol 121 (3) ◽  
pp. 513-519 ◽  
Author(s):  
W Jiang ◽  
J Lechner ◽  
J Carbon

We have cloned and determined the nucleotide sequence of the gene (CBF2) specifying the large (110 kD) subunit of the 240-kD multisubunit yeast centromere binding factor CBF3, which binds selectively in vitro to yeast centromere DNA and contains a minus end-directed microtubule motor activity. The deduced amino acid sequence of CBF2p shows no sequence homologies with known molecular motors, although a consensus nucleotide binding site is present. The CBF2 gene is essential for viability of yeast and is identical to NDC10, in which a conditional mutation leads to a defect in chromosome segregation (Goh, P.-Y., and J. V. Kilmartin, in this issue of The Journal of Cell Biology). The combined in vitro and in vivo evidence indicate that CBF2p is a key component of the budding yeast kinetochore.


1992 ◽  
Vol 167 (1) ◽  
pp. 15-38
Author(s):  
DEFOREST MELLON ◽  
DAVID C. SANDEMAN ◽  
RENATE E. SANDEMAN

1. We obtained intracellular electrophysiological recordings from local interneurones within the hemi-ellipsoid neuropile of the brain in the freshwater crayfish Cherax destructor and Procambarus clarkii. The recordings were made from perfused, isolated head preparations that provided several indications of a healthy physiological condition. 2. The hemi-ellipsoid interneurones are spontaneously active, generating bursts of action potentials at regular intervals. The inter-burst period differs among neurones, varying from about 1.0 s at the shortest periods to around 30 s for the longest periods. 3. Evidence from both electrophysiological recordings and from injection of Lucifer Yellow and Neurobiotin dyes into hemi-ellipsoid interneurones suggests that some of the cells in the populations are electrically coupled to one another. 4. Hemi-ellipsoid interneurones are driven postsynaptically by axons within the lateral protocerebral tract. Experiments with focal electrical stimulation strongly suggest that the pathways responsible include axons of the olfactory-globular tract. These findings support our previous electron microscopical data showing that olfactory-globular tract axons are presynaptic to the hemi-ellipsoid interneurones. 5. These findings support the conclusion that hemi-ellipsoid interneurones are an integral link in the central olfactory pathway of the crayfish. Note: Present address and address for reprint requests: Department of Biology, Gilmer Hall, University of Virginia, Charlottesville, VA 22901, USA.


1994 ◽  
Vol 71 (4) ◽  
pp. 1422-1427 ◽  
Author(s):  
E. A. Seyfarth ◽  
A. S. French

1. We have developed an isolated mechanoreceptor-organ preparation in which the intact sensory structures are available for mechanical stimulation and electrical recording. The anterior lyriform slit sense organ on the patella of the spider, Cupiennius salei Keys., consists of seven or eight cuticular slits, each innervated by a pair of large bipolar sensory neurons. The neurons are fusiform, and the largest somata are < or = 120 microns long. The innervation of the organ was characterized by light microscopy of neurons backfilled with neuronal tracers. Intracellular recording was used to measure the passive and active electrical properties of the neurons, in several cases followed by identification with Lucifer yellow injection. Both neurons of each pair from one slit responded with action potentials to depolarization by a step current injection. Approximately half of the sensory neurons adapted very rapidly and generated only one or two action potentials in response to a sustained depolarizing step, while a second group produced a burst of action potentials that adapted to silence in approximately 1 s or less. Recordings from identified neuron pairs indicated that each pair consists of one rapidly adapting and one bursting neuron. Measurements of cell membrane impedances and time constants produced estimates of neuronal size that agreed with the morphological measurements. This new preparation offers the possibility of characterizing the mechanisms underlying transduction and adaptation in primary mechanosensory neurons.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2400 ◽  
Author(s):  
Wanjun Sheng ◽  
Xiangfu Wang ◽  
Yong Tao ◽  
Xiaohong Yan

We report a new method for detecting variable resistance during short time intervals by using an optical method. A novel variable-resistance sensor composed of up-conversion nanoparticles (NaYF4:Yb3+,Er3+) and reduced graphene oxide (RGO) is designed based on characteristics of a negative temperature coefficient (NTC) resistive element. The fluorescence intensity ratio (FIR) technology based on green and red emissions is used to detect variable resistance. Combining the Boltzmann distributing law with Steinhart–Hart equation, the FIR and relative sensitivity SR as a function of resistance can be defined. The maximum value of SR is 1.039 × 10−3/Ω. This work reports a new method for measuring variable resistance based on the experimental data from fluorescence spectrum.


1982 ◽  
Vol 94 (1) ◽  
pp. 165-178 ◽  
Author(s):  
D P Kiehart ◽  
I Mabuchi ◽  
S Inoué

Antibody against cytoplasmic myosin, when microinjected into actively dividing cells, provides a physiological test for the role of actin and myosin in chromosome movement. Anti-Asterias egg myosin, characterized by Mabuchi and Okuno (1977, J. Cell Biol., 74:251), completely and specifically inhibits the actin activated Mg++ -ATPase of myosin in vitro and, when microinjected, inhibits cytokinesis in vivo. Here, we demonstrate that microinjected antibody has no observable effect on the rate or extent of anaphase chromosome movements. Neither central spindle elongation nor chromosomal fiber shortening is affected by doses up to eightfold higher than those require to uniformly inhibit cytokinesis in all injected cells. We calculate that such doses are sufficient to completely inhibit myosin ATPase activity in these cells. Cells injected with buffer alone, with myosin-absorbed antibody, or with nonimmune gamma-globulin, proceed normally through both mitosis and cytokinesis. Control gamma-globulin, labeled with fluorescein, diffuses to homogeneity throughout the cytoplasm in 2-4 min and remains uniformly distributed. Antibody is not excluded from the spindle region. Prometaphase chromosome movements, fertilization, pronuclear migration, and pronuclear fusion are also unaffected by microinjected antimyosin. These experiments demonstrate that antimyosin blocks the actomyosin interaction thought to be responsible for force production in cytokinesis but has no effect on mitotic or meiotic chromosome motion. They provide direct physiological evidence that myosin is not involved in force production for chromosome movement.


1988 ◽  
Vol 66 (6) ◽  
pp. 490-514 ◽  
Author(s):  
Stephen M. Wolniak

The process of mitosis includes a series of morphological changes in the cell in which the directional movements of chromosomes are the most prominent. The presence of a microtubular array, known as the spindle or mitotic apparatus, provides at least a scaffold upon which these movements take place. The precise mechanism for chromosome movement remains obscure, but new findings suggest that the kinetochore may play a key role in chromosome movement toward the spindle pole, and that sliding interactions between or among adjacent microtubules may provide the mechanochemical basis for spindle elongation. The physiological regulation of the anaphase motors and of spindle operation either before or after anaphase remains equally elusive. Elicitors that may serve as controlling elements in spindle function include shifts in cytosolic calcium activity and perhaps the activation or inactivation of protein kinases, which in turn produce changes in the state of phosphorylation of specific spindle components.


Sign in / Sign up

Export Citation Format

Share Document