The alpha 6 beta 1 (VLA-6) and alpha 6 beta 4 protein complexes: tissue distribution and biochemical properties

1990 ◽  
Vol 96 (2) ◽  
pp. 207-217 ◽  
Author(s):  
A. Sonnenberg ◽  
C.J. Linders ◽  
J.H. Daams ◽  
S.J. Kennel

A member of the integrin family, the alpha 6 beta 4 complex was previously identified on human and mouse carcinoma cell lines by using a rat monoclonal antibody to alpha 6. Here we describe two monoclonal antibodies that recognize epitopes on the beta 4 subunit of the human and mouse alpha 6 beta 4 complexes. The monoclonal antibodies against beta 4 were able to preclear alpha 6 beta 4, but not alpha 6 beta 1 from cell line extracts. A substantial fraction of the total beta 4 subunits present on the cell surface was not associated with alpha 6, as it could not be removed by anti-alpha 6 antibodies, but remained precipitable with anti-beta 4 antibodies. There was no evidence for novel alpha subunits associated with beta 4. The alpha 6 subunit consists of disulfide-linked heavy and light chains. The variability in size of these two chains from different cell types is largely due to differences in modifications of N-linked glycans. Additional heterogeneity may be caused by differential proteolytic cleavage of the alpha 6 precursor. Immunoperoxidase staining of tissue sections of neonatal and adult mice revealed that beta 4 expression is limited to epithelial tissues and peripheral nerves. The alpha 6 subunit has a wider distribution that includes all tissues and cells stained by antibodies against beta 4. Cells and tissue that are positive for alpha 6, but negative for beta 4, may express the alpha 6 beta 1 complex.

2000 ◽  
Vol 113 (15) ◽  
pp. 2715-2724
Author(s):  
N.Y. Loh ◽  
S.E. Newey ◽  
K.E. Davies ◽  
D.J. Blake

Dystrophin is the key component in the assembly and maintenance of the dystrophin-associated protein complex (DPC) in skeletal muscle. In kidney, dystroglycan, an integral component of the DPC, is involved in kidney epithelial morphogenesis, suggesting that the DPC is important in linking the extracellular matrix to the internal cytoskeleton of kidney epithelia. Here, we have investigated the molecular architecture of dystrophin-like protein complexes in kidneys from normal and dystrophin-deficient mice. Using isoform-specific antibodies, we show that the different cell types that make up the kidney maintain different dystrophin-like complexes. These complexes can be broadly grouped according to their dystrobrevin content: beta-dystrobrevin containing complexes are present at the basal region of renal epithelial cells, whilst alpha-dystrobrevin-1 containing complexes are found in endothelial and smooth muscle cells. Furthermore, these complexes are maintained even in the absence of all dystrophin isoforms. Thus our data suggest that the functions and assembly of the dystrophin-like complexes in kidney differ from those in skeletal muscle and implicate a protein other than dystrophin as the primary molecule in the assembly and maintenance of kidney complexes. Our findings also provide a possible explanation for the lack of kidney pathology in Duchenne muscular dystrophy patients and mice lacking all dystrophin isoforms.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 836-840 ◽  
Author(s):  
DY Mason ◽  
H Stein ◽  
J Gerdes ◽  
KA Pulford ◽  
E Ralfkiaer ◽  
...  

Two monoclonal antibodies (To15 and 4KB128) specific for the B cell- associated CD22 antigen (135,000 mol wt) are described. On immunoenzymatic analysis of cryostat tissue sections, these antibodies strongly label both mantle zone and germinal center B lymphoid cells in secondary lymphoid follicles (and also scattered extrafollicular lymphoid cells) but are unreactive with other cell types (with the exception of weak reactivity with some epithelioid histiocytes). These reactions differ from those of monoclonal antibodies B1 and B2 (anti- CD20 and CD21) but are similar to those of the pan-B antibody B4 (anti- CD19). One of the anti-CD22 antibodies (To15) has been tested extensively by immunoenzymatic labeling on greater than 350 neoplastic lymphoid and hematological samples. The CD22 antigen was found in tissue sections in most B cell-derived neoplasms, the major exceptions being myeloma (all cases negative) and a small proportion of high-grade lymphoma (6% of cases negative). In cell smears, the antigen could be found on neoplastic cells in most B cell lymphoproliferative disorders, including common acute lymphoblastic leukemia (ALL) (90% positive) and B cell chronic lymphocytic leukemia (CLL) (89% positive). We conclude that anti-CD22 antibodies are of value for identification of human B cell lymphoproliferative disorders (especially when used in conjunction with anti-CD19 antibodies). Previous reports that the CD22 antigen is absent from many B cell neoplasms are probably due to its being expressed within the cytoplasm of immature B cells rather than on their surface.


1984 ◽  
Vol 32 (10) ◽  
pp. 1035-1040 ◽  
Author(s):  
C Cordon-Cardo ◽  
N H Bander ◽  
Y Fradet ◽  
C L Finstad ◽  
W F Whitmore ◽  
...  

The immunoanatomy of the human kidney and urinary tract has been analyzed by a panel of mouse anti-human monoclonal antibodies that define specific domains and structures. The differentiation antigens detected by these monoclonal antibodies represent a series of glycoproteins characteristic of different cell types. They differ from the blood group antigens and appear to be distinct from other antigens previously described within the kidney or urinary tract. The antigens recognized by these monoclonal antibodies represent an immunohistologic dissection of the human nephron. These antibodies have a broad range of potential applications in studying embryogenesis and pathogenesis of nonneoplastic and neoplastic diseases of the human kidney and urothelium.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Luyi Tian ◽  
Jafar S. Jabbari ◽  
Rachel Thijssen ◽  
Quentin Gouil ◽  
Shanika L. Amarasinghe ◽  
...  

AbstractA modified Chromium 10x droplet-based protocol that subsamples cells for both short-read and long-read (nanopore) sequencing together with a new computational pipeline (FLAMES) is developed to enable isoform discovery, splicing analysis, and mutation detection in single cells. We identify thousands of unannotated isoforms and find conserved functional modules that are enriched for alternative transcript usage in different cell types and species, including ribosome biogenesis and mRNA splicing. Analysis at the transcript level allows data integration with scATAC-seq on individual promoters, improved correlation with protein expression data, and linked mutations known to confer drug resistance to transcriptome heterogeneity.


1987 ◽  
Vol 166 (5) ◽  
pp. 1548-1566 ◽  
Author(s):  
M Streuli ◽  
L R Hall ◽  
Y Saga ◽  
S F Schlossman ◽  
H Saito

Leukocyte common antigens (LCAs, also known as T200 and CD 45) are integral membrane proteins expressed exclusively on hematopoietic cells. These molecules exhibit varying molecular masses and epitopes when expressed in different cell types. To determine the genetic bases for the generation of this diversity, three classes of human LCA cDNA clones that are different near their 5' ends have been isolated. These differences arose as a result of differential usage of three exons as determined from an analysis of a genomic DNA clone. Furthermore, Northern blot analysis with LCA exon-specific probes demonstrates the existence of at least two more LCA mRNA forms that are generated by differential splicing. A comparison of the human and mouse LCA protein sequences revealed a marked difference only in the extracellular domain.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5281
Author(s):  
Tania Maffucci ◽  
Marco Falasca

Several studies have identified specific signalling functions for inositol polyphosphates (IPs) in different cell types and have led to the accumulation of new information regarding their cellular roles as well as new insights into their cellular production. These studies have revealed that interaction of IPs with several proteins is critical for stabilization of protein complexes and for modulation of enzymatic activity. This has not only revealed their importance in regulation of several cellular processes but it has also highlighted the possibility of new pharmacological interventions in multiple diseases, including cancer. In this review, we describe some of the intracellular roles of IPs and we discuss the pharmacological opportunities that modulation of IPs levels can provide.


Sign in / Sign up

Export Citation Format

Share Document