scholarly journals Mechanisms of temperature-dependent swimming: the importance of physics, physiology and body size in determining protist swimming speed

2010 ◽  
Vol 213 (24) ◽  
pp. 4223-4231 ◽  
Author(s):  
O. S. Beveridge ◽  
O. L. Petchey ◽  
S. Humphries
1996 ◽  
Vol 199 (10) ◽  
pp. 2243-2252 ◽  
Author(s):  
E Drucker ◽  
J Jensen

In this study, we report the first allometric equations relating gait parameters and swimming speed to body size for fish employing pectoral fin locomotion. Comparisons of locomotor kinematics and performance among striped surfperch (Teleostei: Embiotocidae) are made at the pectoral­caudal gait transition speed (Up-c). Up-c is considered to elicit physiologically equivalent levels of exercise in animals varying over 100-fold in body mass (Mb) by virtue of dynamically similar pectoral fin movements (constant duty factor, length-specific stride length and fin-beat amplitude) and size-independent propulsive efficiency. At Up-c, pectoral fin-beat frequency scales in proportion to Mb-0.12±0.03, a size-dependence consistent with that observed for stride frequency in fishes swimming by axial undulatory propulsion and in many running tetrapods. It is proposed that the similarity in the scaling of frequency in these vertebrate groups reflects an underlying similarity in the allometry of the maximal velocity of muscle shortening. Absolute Up-c (m s-1) generally increases with body size, but the fastest speeds are not exhibited by the largest animals. A pattern of declining performance in fish 23 cm in standard length and longer may be related to their disproportionately small fin areas and aspect ratios. The pronounced negative allometry of Up-c expressed as standard body lengths per second indicates that a given length-specific speed does not induce comparable levels of activity in large and small fish. Thus, normalization of swimming speed to body length may not be a sufficient correction for kinematic comparisons across size.


1996 ◽  
Vol 199 (10) ◽  
pp. 2235-2242 ◽  
Author(s):  
E Drucker ◽  
J Jensen

Swimming trials at increasing velocity were used to determine the effects of steady swimming speed on pectoral fin kinematics for an ontogenetic series of striped surfperch Embiotoca lateralis, ranging from 6 to 23 cm in standard length (SL). The fin stroke cycle consisted of a propulsive period, the duration of fin abduction and adduction, and a 'refractory' period, during which the fin remained adducted against the body. Pectoral fin-beat frequency (fp) measured as the inverse of the entire stride period, as in past studies, increased curvilinearly with speed. Frequency, calculated as the reciprocal of the propulsive period alone, increased linearly with speed, as shown previously for tail-beat frequency of fishes employing axial undulation. Fin-beat amplitude, measured as the vertical excursion of the pectoral fin tip during abduction, increased over a limited range of low speeds before reaching a plateau at 0.35­0.40 SL. Pectoral fin locomotion was supplemented by intermittent caudal fin undulation as swimming speed increased. At the pectoral­caudal gait transition speed (Up-c), frequency and amplitude attained maxima, suggesting that the fin musculature reached a physiological limit. The effects of body size on swimming kinematics differed according to the method used for expressing speed. At a given absolute speed, small fish used higher stride frequencies and increased frequency at a faster rate than large fish. In contrast, the relationship between fp and length-specific speed (SL s-1) had a greater slope for large fish and crossed that for small fish at high speeds. We recommend that comparisons across size be made using speeds expressed as a percentage of Up-c, at which kinematic variables influencing thrust are size-independent.


Hydrobiologia ◽  
2017 ◽  
Vol 796 (1) ◽  
pp. 191-200 ◽  
Author(s):  
Aleksandra Walczyńska ◽  
Lluis Franch-Gras ◽  
Manuel Serra

Author(s):  
Martin Sheader

Parathemisto gaudichaudi was collected off the south coast of Northumberland during 1970–2, and the moulting and growth of laboratory-maintained individuals observed. The moulting behaviour is similar to that described for other amphipods, but individuals remain attached to medusae during moulting. The minimum body size at maturity, the time from hatching to maturity and the length of the intermoult period are shown to be temperature dependent. The analysis of growth-factor data resolves growth into a rapid juvenile phase and a slower adult phase. The development of secondary sex characters is related to developmental stages of the gonads.


2014 ◽  
Author(s):  
James F Gillooly

The tremendous variation in brain size among vertebrates has long been thought to be related to differences in species’ metabolic rates. Species with higher metabolic rates can supply more energy to support the relatively high cost of brain tissue. And yet, while body temperature is known to be a major determinant of metabolic rate, the possible effects of temperature on brain size have scarcely been explored. Thus, here I explore the effects of temperature on brain size among diverse vertebrates (fishes,amphibians, reptiles, birds and mammals). I find that, after controlling for body size,brain size increases exponentially with temperature in much the same way asmetabolic rate. These results suggest that temperature-dependent changes in aerobic capacity, which have long been known to affect physical performance, similarly affect brain size. The observed temperature-dependence of brain size may explain observed gradients in brain size among both ectotherms and endotherms across broad spatial and temporal scales.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12455
Author(s):  
Elisabeth Yarwood ◽  
Claudia Drees ◽  
Jeremy E. Niven ◽  
Wiebke Schuett

Background Individuals within the same species often differ in their metabolic rates, which may covary with behavioural traits (such as exploration), that are consistent across time and/or contexts, and morphological traits. Yet, despite the frequent occurrence of sexual dimorphisms in morphology and behaviour, few studies have assessed whether and how sexes differ in metabolic trait covariances. Methods We investigated sex-specific relationships among resting or active metabolic rate (RMR and AMR, respectively) with exploratory behaviour, measured independently of metabolic rate in a novel environment, body size and body mass, in Carabus hortensis ground beetles. Results RMR, AMR and exploratory behaviour were repeatable among individuals across time, except for male RMR which was unrepeatable. Female RMR neither correlated with exploratory behaviour nor body size/body mass. In contrast, AMR was correlated with both body size and exploratory behaviour. Males with larger body sizes had higher AMR, whereas females with larger body sizes had lower AMR. Both male and female AMR were significantly related to exploratory behaviour, though the relationships between AMR and exploration were body mass-dependent in males and temperature-dependent in females. Discussion Differences between sexes exist in the covariances between metabolic rate, body size and exploratory behaviour. This suggests that selection acts differently on males and females to produce these trait covariances with potentially important consequences for individual fitness.


2014 ◽  
Author(s):  
James F Gillooly

The tremendous variation in brain size among vertebrates has long been thought to be related to differences in species’ metabolic rates. Species with higher metabolic rates can supply more energy to support the relatively high cost of brain tissue. And yet, while body temperature is known to be a major determinant of metabolic rate, the possible effects of temperature on brain size have scarcely been explored. Thus, here I explore the effects of temperature on brain size among diverse vertebrates (fishes,amphibians, reptiles, birds and mammals). I find that, after controlling for body size,brain size increases exponentially with temperature in much the same way asmetabolic rate. These results suggest that temperature-dependent changes in aerobic capacity, which have long been known to affect physical performance, similarly affect brain size. The observed temperature-dependence of brain size may explain observed gradients in brain size among both ectotherms and endotherms across broad spatial and temporal scales.


Sign in / Sign up

Export Citation Format

Share Document