scholarly journals The Physiology Of Contractile Vacuoles

1936 ◽  
Vol 13 (1) ◽  
pp. 11-27
Author(s):  
J. A. KITCHING

1. There was no change in the body volume of marine Peritricha subjected to reductions in the salt concentration of the medium, so long as the osmotic pressure of the medium was kept constant by the addition of urea, glycerol, or cane-sugar. In mixtures of isotonic non-electrolytes with sea water the rate of vacuolar output was decreased--more so in the case of urea than of glycerol. It is concluded that the cell membrane is relatively impermeable to urea, glycerol, and cane-sugar, and also to neutral salts. 2. Excretory substances could not be produced in sufficient quantity to attract water into the contractile vacuole by osmosis at the rate observed. The process of diastole therefore involves "secretion" of water by the vacuolar walls. 3. Cyanide and sulphide in very low concentrations rapidly caused a great reduction in the rate of output of the contractile vacuole of marine Peritricha. In the case of cyanide this effect was rapidly reversible. Alcohols and urethane only decreased the rate of vacuolar output when present in much higher concentrations. It is suggested that possibly vacuolar activity depends directly on an oxidative process. 4. When marine Peritricha were transferred from dilute sea water to dilute sea water of the same concentration+cyanide M/200 or M/500 (the pH being carefully controlled), the contractile vacuole was completely or almost completely stopped, and the body increased in volume. When the organism was transferred back to dilute sea water of the same concentration without cyanide, the contractile vacuole became active again and the body decreased in volume until a new steady value was attained which was rather below the value in dilute sea water before cyanide treatment. 5. The increase in body volume consequent on treatment with cyanide was greater the more dilute was the sea water. For sea water of concentrations of 100-75 per cent, no swelling was detectable when the organism was treated with cyanide. 6. The rate of output of the contractile vacuole is sufficiently great to account for the decrease in body volume during recovery from cyanide. 7. The permeability of the body surface to water is estimated as 0.05-0.10 cubic micra per square micron per atmosphere per minute.

1934 ◽  
Vol 11 (4) ◽  
pp. 364-381
Author(s):  
J. A. KITCHING

1. The rate of output of fluid from the contractile vacuole of a fresh-water Peritrich Ciliate was decreased to a new steady value immediately the organism was placed in a mixture of tap water and sea water. The rate of output returned to its original value immediately the organism was replaced in tap water. The contractile vacuole was stopped when the organism was treated with a mixture containing more than 12 per cent, of sea water. 2. Transference of various species of marine Peritricha from 100 per cent, sea water to mixtures of sea water and tap water led to an immediate increase of the body volume to a new and generally steady value. Return of the organism to 100 per cent, sea water led to an immediate decrease of the body volume to its original value or less. 3. Marine Peritricha showed little change in rate of output when treated with concentrations of sea water between 100 and 75 per cent. In more dilute mixtures the rate of output was immediately increased, and then generally fell off slightly to a new steady value which was still considerably above the original (100 per cent. sea water) value. The maximum sustained increase was approximately x 80. Return of the organism to 100 per cent, sea water led to an immediate return of the rate of output to approximately its original value. 4. When individuals of some marine species were placed in very dilute concentrations of sea water, the pellicle was frequently raised up in blisters by the formation of drops of fluid underneath it, and the contractile vacuole stopped. 5. Evidence is brought forward to suggest that in the lower concentrations of sea water marine forms lost salts. 6. The contractile vacuole probably acts as an osmotic controller in fresh-water Protozoa. Its function in those marine Protozoa in which it occurs remains obscure.


1948 ◽  
Vol 25 (4) ◽  
pp. 421-436
Author(s):  
J. A. KITCHING

1. On transfer from sea water to dilute sea water, the marine peritrich ciliate Vorticella marina swells more rapidly at higher temperatures. 2. It is concluded that the permeability of the surface of V. marina to water is influenced by temperature, with a Q10 of very roughly 2·5-3·2. 3. The body volume of the fresh-water peritrich ciliate Carchesium aselli is maintained approximately constant when the organism is transferred to solutions of sucrose of concentrations up to about 0·04 M; in higher concentrations the organism shrinks. 4. The rate of output of the contractile vacuole of C. aselli decreases with increasing concentrations of sucrose in the external medium; the rate of output is very low in 0·05 M-sucrose. 5. From a consideration of the effects of sucrose solutions on the body volume and on the rate of vacuolar output it is concluded that the initial osmotic pressure of C. aselli normally exceeds that of the external pond water by about 0·04-0·05 M non-electrolyte. 6. The internal osmotic pressure of C. aselli is not materially increased by increase of temperature. 7. It is concluded that the increase in rate of vacuolar output, which accompanies increase of temperature, counterbalances an increased rate of osmotic uptake of water from the external medium, and that this increased rate of uptake is due to an effect of temperature on the permeability of the surface through which the water enters. 8. The rate of vacuolar output is temporarily much increased when C. aselli, which has been equilibrated in solutions of ethylene glycol, is returned to pond water. 9. It is suggested that the temperature and the osmotic pressure of the external solution largely determine the osmotic stress which is imposed on the organism, and that they thus influence the state of hydration of the protoplasm; in turn this may be supposed to determine the activity of the contractile vacuole.


1968 ◽  
Vol 48 (2) ◽  
pp. 359-380
Author(s):  
D. W. SUTCLIFFE

1. Sodium uptake and loss rates are given for three gammarids acclimatized to media ranging from fresh water to undiluted sea water. 2. In Gammarus zaddachi and G. tigrinus the sodium transporting system at the body surface is half-saturated at an external concentration of about 1 mM/l. and fully saturated at about 10 mM/l. sodium. In Marinogammarus finmarchicus the respective concentrations are six to ten times higher. 3. M. finmarchicus is more permeable to water and salts than G. zaddachi and G. tigrinus. Estimated urine flow rates were equivalent to 6.5% body weight/hr./ osmole gradient at 10°C. in M. finmarchicus and 2.8% body weight/hr./osmole gradient in G. zaddachi. The permeability of the body surface to outward diffusion of sodium was four times higher in M. finmarchicus, but sodium losses across the body surface represent at least 50% of the total losses in both M. finmarchicus and G. zaddachi. 4. Calculations suggest that G. zaddachi produces urine slightly hypotonic to the blood when acclimatized to the range 20% down to 2% sea water. In fresh water the urine sodium concentration is reduced to a very low level. 5. The process of adaptation to fresh water in gammarid crustaceans is illustrated with reference to a series of species from marine, brackish and freshwater habitats.


1960 ◽  
Vol 37 (1) ◽  
pp. 73-82
Author(s):  
J. A. KITCHING ◽  
J. E. PADFIELD ◽  
M. H. ROGERS

1. The suctorian Discophrya collini (Root) has been subjected to D2O-H2O mixtures containing up to 99.7% D2O. 2. In 25% D2O or over there is a rapid but temporary shrinkage of the body. This shrinkage is difficult to estimate owing to the wrinkling of the body surface, but amounts to at least 10% in the undiluted (99.7%)D2O. 3. During the period of temporary shrinkage the contractile vacuole ceases activity. Normal activity is resumed when the normal volume is regained. In concentrations of D2O too low to cause shrinkage there is a temporary fall in the rate of vacuolar output. 4. Return to H2O leads to a brief but often very considerable rise in vacuolar output. 5. It is concluded that D2O penetrates less rapidly than H2O. A difference of at least 10% in the diffusion constants in the membrane would be required to explain our results. We cannot exclude this as unreasonable from our data, although an explanation based on differences in the equilibrium properties of D2O and H2O might also be invoked.


1972 ◽  
Vol 57 (3) ◽  
pp. 821-838
Author(s):  
JOHN P. LEADER

1. The larva of Philanisus plebeius is capable of surviving for at least 10 days in external salt concentrations from 90 mM/l sodium chloride (about 15 % sea water) to 900 mM/l sodium chloride (about 150 % sea water). 2. Over this range the osmotic pressure and the sodium and chloride ion concentrations of the haemolymph are strongly regulated. The osmotic pressure of the midgut fluid and rectal fluid is also strongly regulated. 3. The body surface of the larva is highly permeable to water and sodium ions. 4. In sea water the larva is exposed to a large osmotic flow of water outwards across the body surface. This loss is replaced by drinking the medium. 5. The rectal fluid of larvae in sea water, although hyperosmotic to the haemolymph, is hypo-osmotic to the medium, making it necessary to postulate an extra-renal site of salt excretion. 6. Measurements of electrical potential difference across the body wall of the larva suggest that in sea water this tissue actively transports sodium and chloride ions out of the body.


1965 ◽  
Vol 42 (1) ◽  
pp. 59-69
Author(s):  
A. P. M. LOCKWOOD

1. The relative contributions of urine production and diffusion across the body surface to the loss of sodium from the body of the amphipod Gammarus duebeni have been investigated. 2. When the urine is isotonic to the blood some 80% of the total sodium loss is via the urine. 3. As the gradient between blood and medium is increased in dilute media production of urine hypotonic to the blood counteracts the tendency for sodium loss to increase. 4. In consequence, the average rate of sodium uptake at the body surface by animals acclimatized to 2% sea water needs to be only about twice that of animals acclimatized to 50% sea water. 5. It is suggested that the conservation of ions within the body by the production of hypotonic urine is likely to be found to be a common feature of the smaller brackish water crustacea, especially those with a high rate of water turnover.


Author(s):  
G. W. Bryan ◽  
Eileen Ward

SUMMARYThe accumulation of 137Cs from sea water has been examined in relation to potassium metabolism in the lobster Homarus vulgaris and in the prawn Palaemon serratus. In unfed animals 137Cs is taken up and lost far more slowly than 42K. Although all the inactive K in the animals can be exchanged with 42K, higher whole-animal concentration factors are reached for 137Cs (about eight for lobsters and twenty-five for prawns). This is because both species have higher plasma/medium ratios for 137Cs than K at equilibrium despite the selective excretion of 137Cs. Also, except for the hepatopancreas in lobsters and fed prawns, all soft tissues can probably attain higher tissue/plasma ratios for 137Cs than inactive K.Uptake of both isotopes has also been studied in the freshwater crayfish Austropotamobius pallipes pallipes. In crayfish in o-i % sea water 137Cs is not concentrated to the same extent as K by whole animals (50-200 for 137Cs against about 4500 for K). Although the situation between plasma and tissues resembles that in the marine animals, 137Cs cannot be accumulated in the plasma to the same degree as K. Crayfish selectively excrete 137Cs in the urine relative to K at a lower concentration than in the plasma.In the accumulation of 137Cs by all species, muscle is the principal limiting factor in uptake and loss, but with 42K the body surface becomes more limiting.Experiments on the absorption of 137Cs from food in prawns and freshwater crayfish have been carried out. In prawns in a constant environment, feeding is probably less important than uptake over the body surface while in crayfish feeding is probably much more important.


1937 ◽  
Vol 14 (1) ◽  
pp. 56-70
Author(s):  
L. C. BEADLE

1. Nereis diversicolor collected from the same locality at different times showed smaller weight increases in dilute sea water (25 per cent) during the winter than during the summer months. 2. In spite of great variations in the weight curve, the body fluid concentration curve was very constant. 3. The maintenance of hypertonic body fluids and the regulation of body volume are largely unconnected. 4. The lowering of the weight curve below that theoretically expected from the concentration curve cannot be attributed to passive salt loss through the body surface. It is suggested that this is due to the removal of fluid through the nephridia under the hydrostatic pressure produced by the contraction of the body wall muscles. 5. Animals previously subjected to dilute sea water, when placed in water isotonic with the body fluids, will increase the concentration of the latter. This result is more marked when the internal hydrostatic pressure is high. 6. The results suggest that the osmotic regulatory mechanism involves the removal by the nephridia of fluid hypotonic to the body fluids. But no direct evidence for this is available. 7. Calcium deficiency and cyanide in dilute sea water cause an increase of weight and ultimately inhibit the maintenance of hypertonic body fluids. Both these effects are reversible. 8. The mechanism by which body fluids are maintained hypertonic to the external medium is not sufficiently developed to be of survival value in the locality in which the animals were found. 9. The control of body volume is probably of greater importance. 10. The majority of the extra oxygen consumption in dilute sea water is not the result of osmotic work. It is suggested that it may be due to work done by the body wall muscles in resisting swelling.


1972 ◽  
Vol 57 (1) ◽  
pp. 55-76
Author(s):  
R. A. PAL

1. It is estimated that Acanthamoeba castellanii eliminates a volume of water equal to its body volume in about 15-30 min. About 7% of the vacuolar discharge enters the body by means other than osmosis through the surface membrane. Food vacuoles fusing with the contractile vacuole do not significantly affect the rate of output. 2. Vacuolar output declines with the age of culture so that during the stationary phase of growth it is about half of that during early log phase of growth. 3. The rate of output of the contractile vacuole decreases with an increase of concentration of a non-penetrating solute in the external medium and shows a rectilinear relationship up to 0.07 M concentration. A low residual output after 0.07 M may be due to food vacuoles and pinocytic vacuoles. 4. On the basis of vacuolar output the excess internal osmotic pressure and permeability constant of water has been estimated as 0.07 M non-electrolyte and 0.04µm min-1 atm.-1 respectively. 5. On the basis of vacuolar behaviour it is concluded that the relative permeabilities of the plasma membrane to different solutes follows this order: methyl alcohol > ethylene glycol > urea > glycerol. On certain assumptions the permeability of the plasma membrane to ethylene glycol has been estimated provisionally as 0.107 x 10-16 mol/sec/µm2/mol/l. 6. Vacuolar behaviour suggests that sodium chloride, sodium nitrate, sodium sulphate and potassium chloride, but not magnesium chloride and calcium chloride, pass into the cell freely. 7. Growth of populations of A. castellanii is almost normal in polyethylene glycol 600 up to 0.07 M concentration but in higher concentrations it is low. There are some indications of an increase in volume of A . castellanii in cultures of polyethylene glycol 600 up to 0.07 M concentration, but not in higher concentrations. For amoebae cultured in media containing polyethylene glycol 600 the rate of output of the contractile vacuole declines sharply with an increase of polyethylene glycol 600 up to 0.07 M concentration and then more gradually.


1973 ◽  
Vol 58 (1) ◽  
pp. 149-163
Author(s):  
A. P. M. LOCKWOOD ◽  
C. B. E. INMAN

1. The water fluxes across the body surface and the rate of urine production have been studied in the euryhaline amphipod Gammarus duebeni. 2. Urine flow rates (fPOs) have been determined from measurements of loss of [131I]sodium diatrizoate from the body, and the expected urine flow (fPdiff) has been calculated from determinations of the osmotic gradient between blood and medium and the flux of tritiated water. 3. For animals in 2% and 40% sea water the ratio fPOs/fPdiff are 1.16 and 1.44 respectively, and thus approximate fairly closely to unity. This implies that in these media the water subsequently excreted as urine enters the body by osmosis and that there is little interference with the free diffusion of water at the body surface due to passage through long pores or across unstirred layers. 4. In sea water the ratio fPOs/fPdiff is normally (assuming an osmotic gradient of 10 m-osmoles) almost twice unity but urine production is approximately halved when the animals are exposed to sea water saturated with an inhibitor of active sodium uptake (thionine). 5. It is suggested that there is a prima facie case for assuming that part of the fluid subsequently excreted by this species, when in sea water, is taken into the body initially by a process dependent upon active ion transport.


Sign in / Sign up

Export Citation Format

Share Document