scholarly journals Transport Properties of Locust Ileum in vitro: Effects of Cyclic Amp

1988 ◽  
Vol 137 (1) ◽  
pp. 361-385 ◽  
Author(s):  
B. Irvine ◽  
N. Audsley ◽  
R. Lechleitner ◽  
J. Meredith ◽  
B. Thomson ◽  
...  

1. Short-circuited locust ilea exhibited electrical properties remarkably similar to those of recta. The large short-circuit current (Isc) and transepithelial potential, both indicating net active absorption of anions, initially began to decline to zero but could be fully restored by adding cyclic AMP or extracts of corpus cardiacum and ventral abdominal ganglia to the haemocoel side. 2. Ion substitutions and radiotracer flux studies indicated that cyclic AMP-induced ΔIsc was due to electrogenic Cl− transport with kinetics identical to those of the rectum. Concurrent decreases in transileal resistance were due to increases in both Cl− and K+ (PK) permeabilities, most evident as a resistance decrease at the apical membrane. The ΔPK was blocked by basolateral addition of Ba2+, as observed for recta. 3. Everted ileal sacs under open-circuit conditions absorbed a slightly hyperosmotic NaCl-rich fluid and the rate of absorption was increased more than twofold by cyclic AMP. This contrasts with stimulated recta which absorb primarily KCl and a hyposmotic absorbate. Flux studies with short-circuited ilea demonstrated active absorption of Na+ (JnetNa), which was stimulated twofold by cyclic AMP. Removal of external Na+ had little effect on Isc, suggesting that JnetNa involves exchange for another cation, e.g. NH4+. 4. Ilea actively secreted acid at lower rates than do recta under open-circuit conditions. Under short-circuit conditions, cyclic AMP addition led to active alkalinization of the ileal lumen at high rates, and the large Isc represented the difference between active secretion of base equivalents and net absorption of Cl−. 5. The transport capacities of locust ilea and recta are compared in relation to their ultrastructure.

1975 ◽  
Vol 228 (6) ◽  
pp. 1808-1814 ◽  
Author(s):  
HN Nellans ◽  
RA Frizzell ◽  
SG Schultz

Acetazolamide (8 mM) aboishes active Cl absorption and inhibits but does not abolish active Na absorption by stripped, short-circuited rabbit ileum. These effects are not accompanied by significant changes in the transmural electrical potential difference or short-circuit current. Studies of the undirectional influxes of Na andCl indicate that acetazolamide inhibits the neutral, coupled NaCl influx process at the mucosal membranes. This action appears to explain the observed effect of acetazolamide on active, transepithelial Na and Cl transport. Acetazolamide did not significantly inhibit either spontaneous or theophylline-induced Cl secretion by this preparation, suggesting that the theophylline-induced secretion may not simply be due tothe unmasking of a preexisting efflux process when the neutral influx mechanism is inhibited by theophylline. Finally, inhibition of the neutral NaCl influx process by acetazolamide does not appear to be attributable to an inhibition of endogenous HCO3production or an elevation in intracellular cyclic-AMP levels. Instead, it appearstheat the effect of acetazolamide is due to a direct interaction with a membrane component involved in the coupled influx process.


1982 ◽  
Vol 243 (1) ◽  
pp. G36-G41 ◽  
Author(s):  
S. Guandalini ◽  
M. C. Rao ◽  
P. L. Smith ◽  
M. Field

Diarrheagenic strains of Escherichia coli have been shown to produce a heat-stable enterotoxin (ST) that simulates guanylate cyclase, increases short-circuit current (Isc), and inhibits active Cl absorption in the intestine. In rabbit ileum, the ion transport effects are smaller than those produced by cAMP-related agonists. Because ST may be a selective cGMP agonist, we further explored its mode of action in rabbit ileum. ST inhibits net Na and net Cl absorption. ST also inhibits the same fraction of Cl influx across the brush border that theophylline inhibits. At maximal doses, ST and 8-bromo-cGMP (8-Br-cGMP) had nearly equal, nonadditive effects of Isc that were about 66% of that produced by 8-Br-cAMP. ST increased mucosal cGMP concentration 16-fold, whereas epinephrine, an inhibitor of secretion, increased cGMP concentration by only 30%. This is insufficient to alter ion transport because doses of ST that increased cGMP concentration by 100% failed to alter Cl fluxes. Furthermore, epinephrine did not increase cGMP concentration in isolated enterocytes. We conclude that 1) cGMP mediates ST effects on ion transport, and 2) although ST and cAMP-related agonists have the same antiabsorptive effects, ST is less effective in stimulating electrogenic Cl secretion.


1977 ◽  
Vol 233 (1) ◽  
pp. F46-F54 ◽  
Author(s):  
J. Ehrenfeld ◽  
F. Garcia-Romeu

The in vitro skin of Rana esculenta was studied in open-circuit conditions. It was shown that when the external face is bathed in a 2-meq solution of NaCl, sodium is absorbed at a significantly higher rate than chloride. The ionic balance is maintained by excretion of hydrogen. With a mucosal solution of 2 meq Na2SO4 the equation relating sodium absorption to proton excretion is JnH+ = (-25 +/- 7) - (0.73 +/- 0.04) JnNa+. The correlation between the two variables is highly significant. Hydrogen excretion obeys saturation kinetics in relation to the sodium concentration of the mucosal solution. Maximum excretion occurs at a sodium concentration of 4 meq. When the mucosal solution is a 115-meq solution of Na2SO4 the net flux of sodium is 2.3 times higher than that of hydrogen. The balance is maintained by absorption of SO42-. The effects of various substances on the Na+ext/H+int exchange were studied. With a mucosal solution of 2 meq Na2SO4 and short-circuit conditions it was shown that the hydrogen excretion is active and nearly the same as in open circuit, the short-circuit current is equal (to within 8%) to the sum of the sodium and hydrogen net fluxes, and the correlation between the movements of the two ions is low. A model relating the active proton excretion with the sodium transport mechanism is proposed.


1983 ◽  
Vol 106 (1) ◽  
pp. 71-89 ◽  
Author(s):  
J. W. Hanrahan ◽  
J. E. Phillips

The hindgut of the desert locust possesses an unusual chloride transport system. The isolated locust rectum absorbs chloride from the mucosal (lumen) to the serosal (haemolymph) side at a rate which is equal to the short-circuit current (Isc). Net chloride transport (JClnet) persists in nominally Na-free or HCO3(CO2)-free saline, is insensitive to normal inhibitors of NaCl co-transport and anion exchange, and is independent of the net electrochemical gradient for sodium across the apical membrane. However, active chloride transport is strongly dependent on mucosal potassium (Ka = 5.3 mM-K). Chloride entry across the apical membrane is active, whereas the net electrochemical gradient across the apical membrane is active, whereas the net electrochemical gradient across the basal membrane favours passive Cl exit from the cell. Although mucosal potassium directly stimulates ‘uphill’ chloride entry, there is no evidence for coupled KCl co-transport, nor would co-entry with potassium be advantageous energetically. Net chloride absorption and Isc are stimulated by a peptide hormone from the central nervous system which acts via cyclic-AMP. Cyclic-AMP increases Isc and JClnet approximately 1000% and transepithelial conductance (Gt) approximately 100%. Approximately half of the delta Gt during stimulation results from increased Cl conductance at the basal cell border. This increase is also reflected in a shift of the basal membrane e.m.f. towards the Nernst potential for chloride. The remainder of the cAMP-induced delta Gt is due to an elevation of apical membrane K conductance, which causes a 400% increase in transepithelial potassium permeability as estimated by radiotracer diffusion. Because of this stimulation of K conductance, potassium serves as the principal counterion for active chloride transport under open-circuit conditions. Very high luminal levels of K oppose the stimulatory actions of cAMP on active Cl transport and K conductance. These and other results have been incorporated into a cellular model for KCl absorption across this insect epithelium.


1975 ◽  
Vol 62 (2) ◽  
pp. 357-366
Author(s):  
A. M. Jungreis ◽  
W. R. Harvey

1. The exuvial side of the pharate pupal integument is usually positive to the haemolymph-side, both in vivo and in vitro, during the period when the moulting fluid is being secreted. 2. The ratio of potassium flux toward the exuvial space is higher than that toward the haemolymph, under both open-circuit conditions and short-circuit conditions, demonstrating by the Flux Ratio test that potassium is actively transported across the isolated integument during this secretion period. 3. Just prior to ecdysis, while moulting fluid is being reabsorbed, the potassium flux ratios become unity, suggesting that active potassium transport has ceased, but the short-circuit current that remains suggests that some other ion is actively transported at this time. 4. We argue that the potassium salt solution, formed in the exuvial space (as water presumably follows the actively transported potassium), has three functions (1) to accomplish the gel--sol transformation, (2) to activate the gel enzymes and (3) to buffer the enzyme solution at a pH favourable to the activity of the gel enzymes.


1978 ◽  
Vol 56 (8) ◽  
pp. 1879-1882 ◽  
Author(s):  
J. Spring ◽  
J. Hanrahan ◽  
J. Phillips

Rates of ion transport across locust recta were monitored in vitro by following fluxes of 22Na+ and 36Cl−, short-circuit current (Isc), and open-circuit electropotential difference (PD) across this epithelium for several hours. Corpora cardiaca (CC) homogenates, cAMP, theophylline, and hemolymph of recently fed locusts all stimulate electrogenic transport of Cl− across locust rectum, as indicated by a two- to three-fold increase in 36Cl− net flux, Isc, and PD. Cyclic AMP caused a Cl-dependent increase in PD across the lumen-facing but not the hemocoel-facing plasma membrane of the epithelial cells. We propose that a blood-borne factor, possibly from the CC, causes an elevation in cAMP levels in rectal tissue and that this second messenger acts by increasing Cl− entry into the cell from the rectal lumen. Additional fluid absorption accompanies the resulting increase in transport of NaCl, leading to an increase in the hemolymph volume of previously dehydrated locusts.


1986 ◽  
Vol 250 (1) ◽  
pp. G92-G97
Author(s):  
M. Hautefeuille ◽  
V. Brantl ◽  
A. M. Dumontier ◽  
J. F. Desjeux

beta-Casomorphins (beta-CM) represent opioid peptides derived from bovine beta-casein. As opiates are known to decrease short-circuit current (Isc) and stimulate intestinal electrolyte absorption, we tested the effects of natural beta-CM-4-OH, beta-CM-5-OH, and three related analogues on electrolyte transport in rabbit ileum in vitro. At concentrations of 10(-7) to 10(-3) M, the three analogues (beta-[D-Ala2]CM-4-NH2, beta-[D-Ala2,Met5]CM-5-NH2, and beta-[D-Ala2,4,Tyr5]CM-5-NH2) caused a dose-dependent, naloxone-reversible reduction in Isc after addition to the serosal side of the preparation. beta-[D-Ala2,4,Tyr5]CM-5-NH2 also decreased Isc after mucosal addition. Serosal addition of the same analogue stimulated absorption of sodium and chloride (+2.90 +/- 0.95 and +2.12 +/- 0.60 mu eq . h-1 . cm-2, respectively) and inhibited residual flux (-1.80 +/- 0.57 mu eq . h-1 . cm-2). The natural beta-CM tested did not decrease Isc. These results demonstrate that beta-CM analogues stimulate intestinal absorption of electrolytes by an opioid mechanism. The fact that beta-[D-Ala2,4,Tyr5]CM-5-NH2 was effective on the mucosal side favored the hypothesis that certain food-related opioid peptides might be absorbed by the intestine.


1985 ◽  
Vol 249 (1) ◽  
pp. G113-G119 ◽  
Author(s):  
J. H. Sellin ◽  
R. C. DeSoignie

Steroids are potent absorbagogues, increasing Na and fluid absorption in a variety of epithelia. This study characterizes the in vitro effects of pharmacological doses of gluco- and mineralocorticoids on transport parameters of rabbit proximal and distal colon. Treatment with methylprednisolone (MP, 40 mg im for 2 days) and desoxycortone acetate (DOCA, 12.5 mg im for 3 days) resulted in a significant increase in short-circuit current (Isc) in distal colon, suggesting an increase in basal Na absorption. Amiloride (10(-4) M) caused a significantly negative Isc in MP-treated tissue, demonstrating a steroid-induced, amiloride-insensitive electrogenic ion transport in distal colon. The effect of two absorbagogues, impermeant anions (SO4-Ringer) and amphotericin, were compared in control and steroid-treated distal colon. In controls, both absorbagogues increased Isc. Impermeant anions caused a rise in Isc in both MP and DOCA tissues, suggesting that the high rate of basal Na absorption had not caused a saturation of the Na pump. The steroid-treated colons, however, did not consistently respond to amphotericin. Amiloride inhibited the entire Isc in MP-treated distal colon that had been exposed to amphotericin; this suggested that amphotericin had not exerted its characteristic effect on the apical membrane of steroid-treated colon. In proximal colon, steroids did not alter basal rates of transport; however, epinephrine-induced Na-Cl absorption was significantly greater in MP-treated vs control (P less than 0.005). Steroids increase the absorptive capacity of both proximal and distal colon for Na, while increasing basal Na absorption only in the distal colon.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 250 (3) ◽  
pp. R474-R484 ◽  
Author(s):  
C. P. Sibley ◽  
B. S. Ward ◽  
J. D. Glazier ◽  
W. M. Moore ◽  
R. D. Boyd

Electrical activity generated by pieces of pig placenta, taken from anesthetized animals and mounted in Ussing chambers, has been investigated. Ten minutes after the start of voltage clamping, potential difference (PD; fetal side positive, open circuit), short circuit current (SCC), and resistance were 5.9 +/- 0.4 (SE) mV, 8.6 +/- 0.5 microA X cm-2, and 720 +/- 45 omega X cm2, respectively (n = 50). Ouabain (10(-4) M) added to the fetal side caused a maximum decline in PD and SCC from the time of addition of -3.7 +/- 0.98 mV and -3.9 +/- 1.4 microA X cm-2 (n = 6); epinephrine (10(-5) M) added to the fetal side caused increases of +1.0 +/- 0.2 mV and +4.0 +/- 1.4 microA X cm-2, respectively (n = 14). Drug concentrations for 50% maximum response for the effect of a series of adrenergic agonists on SCC were (in M) isoproterenol 1.2 +/- 0.05 X 10(-8), norepinephrine 6.1 +/- 0.3 X 10(-8), epinephrine 2.4 +/- 0.1 X 10(-7), and phenylephrine 4.7 +/- 0.2 X 10(-5), suggesting the involvement of fetally oriented beta-adrenergic receptors. Fetal epinephrine (10(-5) M) also stimulated net Na+ flux (Jnet) toward the fetal side to an extent equal to its effect on SCC. In control experiments Jnet was small but was inhibited by fetal side ouabain (10(-4) M) to produce a maternally directed Jnet, significantly different to the SCC. Replacement of Na+ by choline reduced SCC markedly but did not abolish it. In the absence of Na+, epinephrine had no effect on SCC. These results suggest that active Na+ transfer is not completely responsible for the control electrical activity of pig placenta. Epinephrine, however, modulates SCC entirely by stimulating net Na+ transfer toward the fetal side.


1989 ◽  
Vol 256 (4) ◽  
pp. C750-C755 ◽  
Author(s):  
W. Nagel ◽  
G. Carrasquer

The effect of loop diuretics on Cl transport was studied on an in vitro preparation of the bullfrog cornea. Bumetanide (10(-4) M) or furosemide (10(-3) M) added to the stromal solution decreased Cl transport measured as the short-circuit current (Isc) to values near zero. Concomitantly, transepithelial conductance (gt) decreased, whereas the intracellular potential (Vo) hyperpolarized and the fractional resistance of the apical membrane (fRo) increased. Substitution of SO4 for Cl in the tear-side solution led to prompt changes in Isc, gt, Vo, and fRo, characteristic of appreciable passive Cl movement across the apical membrane before and after inhibition. Epinephrine (10(-4) M) was similarly effective on apical membrane conductance in inhibited tissues as under control conditions, but the effective electromotive force for transepithelial Cl transport was reduced to approximately 25%. Intracellular Cl activity, measured with ion-selective microelectrodes, decreased so much that the difference in electrochemical Cl potential divided by the Faraday constant (delta mu Cl/F) was close to zero after inhibition of Isc by bumetanide. Apical Cl permeability remained essentially unchanged. Accordingly, loop diuretics inhibit Cl transport in the Cl-secreting cornea epithelium by blocking the Na-Cl symport without secondary apical effects, as believed for other Cl-reabsorbing epithelia.


Sign in / Sign up

Export Citation Format

Share Document