MODULATION OF TENSION PRODUCTION BY OCTOPAMINE IN THE METATHORACIC DORSAL LONGITUDINAL MUSCLE OF THE CRICKET TELEOGRYLLUS OCEANICUS

1990 ◽  
Vol 149 (1) ◽  
pp. 161-176
Author(s):  
BRUCE A. O'GARA ◽  
CHARLES D. DREWES

1. Application of octopamine to the metathoracic dorsal longitudinal muscle (DLM) of the cricket Teleogryllus oceanicus produced dose-dependent increases twitch amplitude, contraction rate and relaxation rate. The threshold for octopamine effects was between 10−8 and 10−7moll−1, while maximal effects were seen at approximately 10−5moll−1 2. The octopamine receptors were classified as octopamine2 receptors on the basis of the differential responsiveness of the muscle to the octopamine agonists naphazoline, tolazoline, clonidine and the octopamine antagonists metoclopramide and chlorpromazine. It was not possible to distinguish between octopamine2A or octopamine2B receptors in this preparation. 3. Octopamine had both presynaptic and postsynaptic effects, since it increased both miniature end-plate potential (mEPP) frequency and muscle relaxation rate 4. At a calcium concentration of 11 mmoll−1, octopamine did not affect muscle membrane potential, input resistance or EJP amplitude, but the EJP duration at half amplitude (T½) was slightly increased. In low-calcium saline (1.8 mmol−1), octopamine did not affect membrane potential or T½, but EJP amplitude was increased 5. Stimulation of the octopaminergic dorsal unpaired median neuron (DUMDL), which innervates the metathoracic DLM, increased twitch amplitude about 25% of the preparations. Failure in the other preparations wasapparently due to spike conduction failure within the metathoracic ganglion.6. These results show that octopamine can be an important modulator of metathoracic DLM tension production

1971 ◽  
Vol 54 (1) ◽  
pp. 167-186
Author(s):  
Y. ITO ◽  
H. KURIYAMA ◽  
N. TASHIRO

1. Effects of catecholamines and adrenergic blocking agents on the neuromuscular junction of the somatic muscle of the earthworm, Pheretima communissima were studied by the microelectrode technique. 2. Effects of catecholamines and their blocking agents on the post-junction membrane could be summarized as follows: (a) Adrenaline and isoprenaline (10-8-10-5 g/ml) hyperpolarized the membrane in proportion to the applied concentration. However, noradrenaline (10-8-10-5 g/ml) had no effect on the membrane potential. (b) Changes of the membrane resistance which appeared on treatment with catecholamines were in parallel with the changes of the membrane potential. (c) In the presence of excess calcium ions and in sodium-free (tris) solution, adrenaline and isoprenaline had no effect on the membrane potential or on the input resistance of the membrane. An increase of potassium ions and reduction of chloride ions had no relation to the actions of adrenaline and isoprenaline on the post-junctional muscle membrane. (d) Propranolol competitively inhibited the action of isoprenaline on the post-junctional muscle membrane but phentolamine had no effect on this action. 3. Effects of catecholamines and their blockers on the m.e.j.p. and m.i.j.p. were observed. (a) After treatment with picrotoxin, the m.e.j.p. could be recorded in sodium-free solution. The frequency of the m.e.j.p. was increased by noradrenaline and adrenaline but not by isoprenaline. In normal Ringer's solution isoprenaline slightly increased the frequency of m.e.j.p. but this appeared to be due to the effect of isoprenaline on the post-junctional membrane. (b) Phentolamine increased the mean amplitude of the m.e.j.p. but had no effect on the frequency of the m.e.j.p. After treatments with phentolamine effects of noradrenaline were inhibited. (c) After pre-treatment with d-tubocurarine, noradrenaline and adrenaline increased the frequency of the m.i.j.p. but only adrenaline increased the mean amplitude. Isoprenaline had no effect on the frequency but increased the mean amplitude of the m.i.j.p. 4. From the above results it is concluded that the α-response to catecholamines increased the release of chemical transmitter from the nerve terminals; the β-response increased the membrane potential and the input resistance of the post-junctional muscle membrane. Both α- and β-responses to the catecholamines facilitated the transmission mechanism of the earthworm somatic muscle.


1969 ◽  
Vol 51 (2) ◽  
pp. 363-375
Author(s):  
Y. ITO ◽  
H. KURIYAMA ◽  
N. TASHIRO

The effects of GABA and picrotoxin on the input resistance of the muscle of the earthworm, Pheretima communissima in Ringer solution and in solutions containing various foreign anions were observed. 1. Substitution of Cl- by I- and Br- reduced the input resistance and hyperpolarized the membrane. Although anions larger than chloride in hydrated size increased the input resistance, no change of the membrane potential was observed. 2. GABA reduced the input resistance of the membrane and picrotoxin increased it in Ringer solution. The dose-response curve for the changes of the input resistance under various concentrations of GABA shifted parallel-wise under treatment with picrotoxin. 3. In the presence of foreign anions which had larger hydration size than Br-, GABA reduced the input resistance. Picrotoxin did not, however, increase the input resistance when the solutions contained anions of smaller hydration size than ClO4-. 4. Reversal potential levels for the miniature inhibitory junction potential in various concentrations of chloride were measured. The change of the reversal potential levels produced by a tenfold change of chloride concentration was 25 mV.


1990 ◽  
Vol 259 (3) ◽  
pp. C402-C408 ◽  
Author(s):  
E. P. Burke ◽  
K. M. Sanders

Previous studies have suggested that the membrane potential gradient across the circular muscle layer of the canine proximal colon is due to a gradient in the contribution of the Na(+)-K(+)-ATPase. Cells at the submucosal border generate approximately 35 mV of pump potential, whereas at the myenteric border the pump contributes very little to resting potential. Results from experiments in intact muscles in which the pump is blocked are somewhat difficult to interpret because of possible effects of pump inhibitors on membrane conductances. Therefore, we studied isolated colonic myocytes to test the effects of ouabain on passive membrane properties and voltage-dependent currents. Ouabain (10(-5) M) depolarized cells and decreased input resistance from 0.487 +/- 0.060 to 0.292 +/- 0.040 G omega. The decrease in resistance was attributed to an increase in K+ conductance. Studies were also performed to measure the ouabain-dependent current. At 37 degrees C, in cells dialyzed with 19 mM intracellular Na+ concentration [( Na+]i), ouabain caused an inward current averaging 71.06 +/- 7.49 pA, which was attributed to blockade of pump current. At 24 degrees C or in cells dialyzed with low [Na+]i (11 mM), ouabain caused little change in holding current. With the input resistance of colonic cells, pump current appears capable of generating at least 35 mV. Thus an electrogenic Na+ pump could contribute significantly to membrane potential.


2000 ◽  
Vol 203 (14) ◽  
pp. 2229-2236 ◽  
Author(s):  
M.W. Beaumont ◽  
E.W. Taylor ◽  
P.J. Butler

Previously, the distribution of ammonia between the intracellular and extracellular compartments has been used to predict a significant depolarisation of the resting membrane potential (E(M)) of white muscle from brown trout (Salmo trutta) exposed to a sub-lethal combination of copper and low pH. However, this prediction is based upon two assumptions (i) a relatively high membrane permeability for the ammonium ion with respect to that for ammonia gas and (ii) that this is unaltered by exposure to copper and low pH. Since there is conflicting evidence in the literature of the validity of these assumptions, in the present study E(M) was directly measured in white muscle fibres of trout exposed to copper and low pH (E(M)=−52.2+/−4.9 mV) and compared with that of unexposed, control animals (E(M)=−86.5+/−2.9 mV) (means +/− s.e.m., N=6). In confirming the predicted depolarisation, these data support the hypothesis of electrophysiological impairment as a factor in the reduction in the swimming performance of trout exposed to these pollutants. In addition, the results of this study support the role of a significant permeability of the muscle membrane to NH(4)(+) in determining the distribution of ammonia in fish.


1979 ◽  
Vol 78 (1) ◽  
pp. 29-45
Author(s):  
MAURIZIO MIROLLI

1. The response of the coxal receptors of the crab Scylla serrata to step stretches consisted of a partial action potential, Vα, followed by a steady-state depolarization, V8. The input resistance of the fibre was reduced during V8. 2. In the absence of stimulation, the dendrites of the receptors depolarized when external Na+ was substituted with choline or Li+, and when the external K+ concentration was increased or decreased. The dendrites also depolarized when ouabain was added to the saline. 3. The amplitude of both Vα and V8 was dependent on external Na+. In cells which were depolarized by ouabain, the amplitude of V8 increased when the K+ concentration of the saline was reduced. 4. V8 was followed by a small, but long-lasting, after-potential which was depolarizing when the membrane potential was between −70 and −60 mV. In cells depolarized by ouabain or by low K+ saline, the after-potential became hyperpolarizing. 5. When trains of brief stretches (each 5 ms in duration) were used as stimuli, the cells responded with trains of Vα responses. During this tetanic stimulation the cells hyperpolarized; cessation of the stimulus train was followed by a long-lasting hyperpolarization (PTH). 6. PTH was abolished in Li+ saline, in low K+ saline, and in the presence of ouabain. In control or in low K+ saline, PTH was not accompanied by a decrease in the input resistance of the fibres. 7. It is concluded that an electrogenic Na+ pump (or equivalent process) contributes a substantial fraction of the membrane potential of the unstimulated coxal receptors. Pump activity could be increased by Na+-loading the distal part of the cells with trains of Vα responses. By contrast, during the steady-state response to stretch, the pump was not activated.


1988 ◽  
Vol 254 (3) ◽  
pp. C423-C431 ◽  
Author(s):  
H. Yamaguchi ◽  
T. W. Honeyman ◽  
F. S. Fay

Studies were carried out to determine the effects of the beta-adrenergic agent, isoproterenol (ISO), on membrane electrical properties in single smooth muscle cells enzymatically dispersed from toad stomach. In cells bathed in buffer of physiological composition, the average resting potential was -56.4 +/- 1.4 mV (mean +/- SE, n = 35). The dominant effect of exposure to ISO was hyperpolarization. The hyperpolarization was apparent in all cells studied and averaged 11.6 +/- 1.2 mV (n = 27). In the majority of the cells, hyperpolarization was accompanied by a decreased input resistance (Rin). Often the change in resistance appeared to lag behind the change in membrane potential. The lack of coincident changes in membrane potential and resistance may reflect a superposition of the outward rectification properties of the membrane on beta-adrenergic-induced increases in ionic conductance. In about half of the cells, an initial small depolarization (3.1 +/- 0.3 mV, n = 14) was accompanied by a small but distinct increase in Rin (12 +/- 2.5%). When membrane potential was made more negative than the estimated equilibrium potential for K+ (EK) by injection of current, ISO also produced biphasic effects, an initial hyperpolarization which reversed to a sustained depolarization to a value (-90 mV) near the estimated EK. The hyperpolarization by ISO could be diminished in a time-dependent manner by previous exposure to ouabain. The inhibition by ouabain, however, appeared to be a fortuitous result of glycoside-induced positive shifts in EK. These observations indicate that the dominant electrophysiological effect of beta-adrenergic stimuli is to hyperpolarize the cell membrane.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 78 (5) ◽  
pp. 2235-2245 ◽  
Author(s):  
Xiao Wen Fu ◽  
Borys L. Brezden ◽  
Shu Hui Wu

Fu, Xiao Wen, Borys L. Brezden, and Shu Hui Wu. Hyperpolarization-activated inward current in neurons of the rat's dorsal nucleus of the lateral lemniscus in vitro. J. Neurophysiol. 78: 2235–2245, 1997. The hyperpolarization-activated current ( I h) underlying inward rectification in neurons of the rat's dorsal nucleus of the lateral lemniscus (DNLL) was investigated using whole cell patch-clamp techniques. Patch recordings were made from DNLL neurons of young rats (21–30 days old) in 400 μm tissue slices. Under current clamp, injection of negative current produced a graded hyperpolarization of the cell membrane, often with a gradual sag in the membrane potential toward the resting value. The rate and magnitude of the sag depended on the amount of hyperpolarizing current. Larger current resulted in a larger and faster decay of the voltage. Under voltage clamp, hyperpolarizing voltage steps elicited a slowly activating inward current that was presumably responsible for the sag observed in the voltage response to a steady hyperpolarizing current recorded under current clamp. Activation of the inward current ( I h) was voltage and time dependent. The current just was seen at a membrane potential of −70 mV and was activated fully at −140 mV. The voltage value of half-maximal activation of I h was −78.0 ± 6.0 (SE) mV. The rate of I h activation was best approximated by a single exponential function with a time constant that was voltage dependent, ranging from 276 ± 27 ms at −100 mV to 186 ± 11 ms at −140 mV. Reversal potential ( E h) of I h current was more positive than the resting potential. Raising the extracellular potassium concentration shifted E h to a more depolarized value, whereas lowering the extracellular sodium concentration shifted E h in a more negative direction. I h was sensitive to extracellular cesium but relatively insensitive to extracellular barium. The current amplitude near maximal-activation (about −140 mV) was reduced to 40% of control by 1 mM cesium but was reduced to only 71% of control by 2 mM barium. When the membrane potential was near the resting potential (about −60 mV), cesium had no effect on the membrane potential, current-evoked firing rate and input resistance but reduced the spontaneous firing. When the membrane potential was more negative than −70 mV, cesium hyperpolarized the cell, decreased current-evoked firing and increased the input resistance. I h in DNLL neurons does not contribute to the normal resting potential but may enhance the extent of excitation, thereby making the DNLL a consistently powerful inhibitory source to upper levels of the auditory system.


1980 ◽  
Vol 58 (9) ◽  
pp. 999-1010 ◽  
Author(s):  
Peter C. Vaughan ◽  
James G. McLarnon ◽  
Donald D. F. Loo

Three-microelectrode voltage-clamp experiments have been conducted on surface fibres of Xenopus laevis sartorius muscles. When potassium and chloride were substituted by rubidium and sulphate, negligibly small currents were observed. In solutions containing rubidium and chloride at pH 8.4–8.8 normally polarized fibres exhibited instantaneous current–voltage relations that were linear over a wide voltage range. Chloride conductance varied widely from fibre to fibre; the mean resting conductance at −80 mV was 7.4 × 10−4 ± 2.6 × 10−4 S/cm2 (mean ± SE). When hyperpolarizing voltage steps were made, conductance declined from the initial to the steady state; inward currents saturated near 14 μA/cm2. In experiments performed on fibres depolarized by immersion in K+-and Rb+-rich solutions it was found that resting conductance did not increase by as much as would be expected from constant field – constant permeability precepts, by comparison with normally polarized fibres. Despite the low chloride transmembrane concentration ratio, rectification in the steady state was similar in depolarized and normally polarized fibres.When a two-pulse protocol was employed to test the availability of chloride conductance after conditioning of the system at some voltage, it was found that the test current, the initial current at the onset of the test voltage step, depended sigmoidally on the conditioning voltage. The sigmoid relationships had asymptotic limits: after hyperpolarizing conditioning the test current was minimal, after depolarizing conditioning, maximal. Normalized sigmoid relations were superimposable, whether from normally polarized or chronically depolarized cells.When the protocol was repeated using different test potentials and initial currents following a particular conditioning voltage were plotted against the test potential, families of straight lines were obtained. The slopes of the members of these families were dependent on the conditioning voltage: the more negative the conditioning step the lower the slope. The lines projected through a mutual intersection at a voltage slightly more positive than the resting potential. This is interpreted as indicating that there is some voltage, slightly positive with respect to the membrane potential, at which the initial current is independent of the conditioning voltage.It is concluded that the state of the chloride conductance mechanism is a function of the deviation of the membrane from the resting potential rather than of the absolute membrane potential and that relaxations from initial to steady states reflect properties of the permeation mechanism rather than accumulation or depletion of chloride in a confined space, although some contribution by a mechanism such as the latter cannot be completely ruled out.


2009 ◽  
Vol 297 (1) ◽  
pp. H102-H108 ◽  
Author(s):  
Nicolas Doisne ◽  
Véronique Maupoil ◽  
Pierre Cosnay ◽  
Ian Findlay

Ectopic activity in cardiac muscle within pulmonary veins (PVs) is associated with the onset and the maintenance of atrial fibrillation in humans. The mechanism underlying this ectopic activity is unknown. Here we investigate automatic activity generated by catecholaminergic stimulation in the rat PV. Intracellular microelectrodes were used to record electrical activity in isolated strips of rat PV and left atrium (LA). The resting cardiac muscle membrane potential was lower in PV [−70 ± 1 (SE) mV, n = 8] than in LA (−85 ± 1 mV, n = 8). No spontaneous activity was recorded in PV or LA under basal conditions. Norepinephrine (10−5 M) induced first a hyperpolarization (−8 ± 1 mV in PV, −3 ± 1 mV in LA, n = 8 for both) then a slowly developing depolarization (+21 ± 2 mV after 15 min in PV, +1 ± 2 mV in LA) of the resting membrane potential. Automatic activity occurred only in PV; it was triggered at approximately −50 mV, and it occurred as repetitive bursts of slow action potentials. The diastolic membrane potential increased during a burst and slowly depolarized between bursts. Automatic activity in the PV was blocked by either atenolol or prazosine, and it could be generated with a mixture of cirazoline and isoprenaline. In both tissues, cirazoline (10−6 M) induced a depolarization (+37 ± 2 mV in PV, n = 5; +5 ± 1 mV in LA, n = 5), and isoprenaline (10−7 M) evoked a hyperpolarization (−11 ± 3 mV in PV, n = 7; −3 ± 1 mV in LA, n = 6). The differences in membrane potential and reaction to adrenergic stimulation lead to automatic electrical activity occurring specifically in cardiac muscle in the PV.


Author(s):  
Christof Koch

This chapter represents somewhat of a tephnical interlude. Having introduced the reader to both simplified and more complex compartmental single neuron models, we need to revisit terrain with which we are already somewhat familiar. In the following pages we reevaluate two important concepts we defined in the first few chapters: the somatic input resistance and the neuronal time constant. For passive systems, both are simple enough variables: Rin is the change in somatic membrane potential in response to a small sustained current injection divided by the amplitude of the current injection, while τm is the slowest time constant associated with the exponential charging or discharging of the neuronal membrane in response to a current pulse or step. However, because neurons express nonstationary and nonlinear membrane conductances, the measurement and interpretation of these two variables in active structures is not as straightforward as before. Having obtained a more sophisticated understanding of these issues, we will turn toward the question of the existence of a current, voltage, or charge threshold at which a biophysical faithful model of a cell triggers action potentials. We conclude with recent work that suggests how concepts from the subthreshold domain, like the input resistance or the average membrane potential, could be extended to the case in which the cell is discharging a stream of action potentials. This chapter is mainly for the cognoscendi or for those of us that need to make sense of experimental data by comparing therp to theoretical models that usually fail to reflect reality adequately. In Sec. 3.4, we defined Kii (f) for passive cable structures as the voltage change at location i in response to a sinusoidal current injection of frequency f at the same location. Its dc component is also referred to as input resistance or Rin. Three difficulties render this definition of input resistance problematic in real cells: (1) most membranes, in particular at the soma, show voltage-dependent nonlinearities, (2) the associated ionic membrane conductances are time dependent and (3) instrumental aspects, such as the effect of the impedance of the recording electrode on Rin, add uncertainty to the measuring process.


Sign in / Sign up

Export Citation Format

Share Document