How fish power predation fast-starts

1995 ◽  
Vol 198 (9) ◽  
pp. 1851-1861 ◽  
Author(s):  
I A Johnston ◽  
J L van Leeuwen ◽  
M L F Davies ◽  
T Beddow

Short-horned sculpin (Myoxocephalus scorpius L.) were acclimated for 6­8 weeks to either 5 °C or 15 °C (12 h dark: 12 h light). Fast-starts elicited by prey capture were filmed from above in silhouette using a high-speed video camera (200 frames s-1). Outlines of the body in successive frames were digitised and changes in strain for the dorsal fast muscle calculated from a knowledge of backbone curvature and the geometrical arrangement of fibres. For 15 °C-acclimated fish at 15 °C, muscle strain amplitude (peak-to-peak) during the first tail-beat was approximately 0.16 at 0.32L, 0.19 at 0.52L and 0.15 at 0.77L, where L is the total length of the fish. Fast muscle fibres were isolated and subjected to the strains calculated for the first tail-beat of the fast-start (abstracted cycle). Preparations were electrically stimulated at various times after the initiation of the fast-start using an in vivo value of duty cycle (27 %). Prior to shortening, muscle fibres at 0.52L and 0.77L were subjected to a pre-stretch of 0.055l0 and 0.085l0 respectively (where l0 is resting muscle length). The net work per cycle was calculated from plots of fibre length and tensile stress. For realistic values of stimulus onset, the average power output per abstracted cycle was similar at different points along the body and was in the range 24­31 W kg-1 wet muscle mass. During shortening, the instantaneous power output reached 175­265 W kg-1 wet muscle mass in middle and caudal myotomes. At the most posterior position examined, the muscle fibres produced significant tensile stresses whilst being stretched, resulting in an initially negative power output. The fibres half-way down the trunk produced their maximum power at around the same time that caudal muscle fibres generated significant tensile stress. Fast muscle fibres at 0.37­0.66L produced 76 % of the total work done during the first tail-beat compared with only 14 % for fibres at 0.67­0.86L, largely reflecting differences in muscle mass. The effect of temperature acclimation on muscle power was determined using the strain fluctuations calculated for 0.52L. For 5 °C-acclimated fish, the average power per cycle (± s.e.m.; W kg-1 wet muscle mass) was 21.8±3.4 at 5 °C, falling to 6.3±1.8 at 15 °C. Following acclimation to 15 °C, average power per cycle increased to 23.8±2.8 W kg-1 wet muscle mass at 15 °C. The results indicate near-perfect compensation of muscle performance with temperature acclimation.

1993 ◽  
Vol 185 (1) ◽  
pp. 251-265 ◽  
Author(s):  
I. A. Johnston ◽  
C. E. Franklin ◽  
T. P. Johnson

Muscle action during swimming and the contractile properties of isolated muscle fibres were studied in the short-horned sculpin Myoxocephalus scorpius at 5°C. Semi-steady swimming, startle responses and prey-capture events were filmed with a high-speed video at 200 frames s-1, using fish 22–26 cm in total length (L). Electromyographical (EMG) recordings, synchronised with the video, were made from fast muscle in rostral and caudal myotomes at points 0.40L and 0.80L along the body. Fast muscle fibres were first recruited at tail-beat frequencies of 3.7-4.2 Hz, corresponding to a swimming speed of 1.7 L s-1. Electrical activity in the muscles occurred during 16–38 % of each tail- beat cycle regardless of frequency. Muscle fibres were activated during the lengthening phase of the cycle. In caudal myotomes, the onset of the muscle activity occurred at a phase of 75–105° at 3.7 Hz, decreasing to approximately 50° at frequencies greater than 4.5 Hz (0° phase was defined as the point at which muscle fibres passed through their resting lengths in the stretch phase of the cycle; a full cycle is 360°). Prey capture was a stereotyped behaviour consisting of a preparatory movement, a powerstroke at 7–9 Hz and a glide of variable duration. The delay between the activation of muscle fibres in rostral and caudal myotomes during prey capture and startle responses was approximately 10 ms. Fast muscle fibres isolated from rostral and caudal myotomes were found to have similar isometric contractile properties. Maximum tetanic stress was 220 kN m-2, and half-times for force development and relaxation were approximately 50 ms and 135 ms respectively. Power output was measured by the ‘work loop’ technique in muscle fibres subjected to sinusoidal length changes at the range of frequencies found during swimming. Under optimal conditions of strain and stimulation, muscle fibres from rostral and caudal myotomes produced similar levels of work (3.5 J kg-1) and generated their maximum power output of 25–30 W kg-1 at the tail-beat frequencies used in swimming (4–8 Hz). Progressively delaying the onset of stimulation relative to the start of the strain cycle resulted in an initial modest increase, followed by a decline, in the work per cycle. Maximum positive work and net negative work were done at stimulus phase values of 20–50° and 120–140° respectively. The EMG and swimming studies suggest that fast muscle fibres in both rostral and caudal myotomes do net positive work under most conditions.


1999 ◽  
Vol 202 (22) ◽  
pp. 3057-3067 ◽  
Author(s):  
J.M. Wakeling ◽  
K.M. Kemp ◽  
I.A. Johnston

Common carp Cyprinus carpio L. were reared a constant temperature of 20 degrees C from the larval (7 mm total length) to the juvenile (80 mm) stage. Body morphology and white muscle mass distribution were measured. Fast-start escape responses were recorded using high-speed cinematography from which the velocities, accelerations and hydrodynamic power requirements were estimated. All three measures of fast-start performance increased during development. White muscle contraction regimes were calculated from changes in body shape during the fast-starts and used to predict the muscle force and power production for all longitudinal positions along the body. Scaling arguments predicted that increases in body length would constrain the fish to bend less rapidly because the cross-sectional muscle area, and hence force production, does not increase at the same rate as the inertial mass that resists bending. As predicted, the increases in body length resulted in decreases in muscle shortening velocity, and this coincided with increases in both the force and power produced by the muscles. The hydrodynamic efficiency, which relates the mechanical power produced by the muscles to the inertial power requirements in the direction of travel, showed no significant change during ontogeny. The increasing hydrodynamic power requirements were thus met by increases in the power available from the muscles. The majority of the increases in fast-start swimming performance during ontogeny can be explained by size-dependent increases in muscle power output. For all sizes, there was a decrease in muscle-mass-specific power output and an increase in muscle stress in a posterior direction along the body due to systematic variations in fibre strain. These changing strain regimes result in the central muscle bulk producing the majority of the power requirements during the fast-start, and this power is transmitted to the tail region of the fish and ultimately to the water via muscle in the caudal myotomes.


1992 ◽  
Vol 170 (1) ◽  
pp. 143-154 ◽  
Author(s):  
M. ELIZABETH ANDERSON ◽  
IAN A. JOHNSTON

Fast muscle fibres were isolated from abdominal myotomes of Atlantic cod (Gadus morhua L.) ranging in size from 10 to 63 cm standard length (Ls). Muscle fibres were subjected to sinusoidal length changes about their resting length (Lf) and stimulated at a selected phase of the strain cycle. The work performed in each oscillatory cycle was calculated from plots of force against muscle length, the area of the resulting loop being net work. Strain and the number and timing of stimuli were adjusted to maximise positive work per cycle over a range of cycle frequencies at 8°C. Force, and hence power output, declined with increasing cycles of oscillation until reaching a steady state around the ninth cycle. The strain required for maximum power output (Wmax) was ±7-11% of Lf in fish shorter than 18 cm standard length, but decreased to ±5 % of Lf in larger fish. The cycle frequency required for Wmax also declined with increasing fish length, scaling to Ls−0.51 under steady-state conditions (cycles 9–12). At the optimum cycle frequency and strain the maximum contraction velocity scaled to Ls−0.79. The maximum stress (Pmax) produced within a cycle was highest in the second cycle, ranging from 51.3 kPa in 10 cm fish to 81.8 kPa in 60 cm fish (Pmax=28.2Ls0.25). Under steady-state conditions the maximum power output per kilogram wet muscle mass was found to range from 27.5 W in a 10 cm Ls cod to 16.4 W in a 60 cm Ls cod, scaling with Ls−0.29 and body mass (Mb)−0.10 Note: To whom reprint requests should be sent


1985 ◽  
Vol 119 (1) ◽  
pp. 239-249 ◽  
Author(s):  
I. A. Johnston ◽  
B. D. Sidell ◽  
W. R. Driedzic

Common carp (Cyprinus carpio L.), 1 kg body weight, were acclimated for 1–2 months to water temperatures of either 7–8 degrees C (cold-acclimated group) or 23–24 degrees C (warm-acclimated group). Single fast fibres and small bundles of slow fibres were isolated from the myotomal muscles and chemically skinned. Force-velocity (P-V) characteristics were determined at 7 degrees C and 23 degrees C. The contractile properties of carp muscle fibres are dependent on acclimation temperature. In the warm-acclimated group maximum isometric tensions (P0, kN m-2) are 47 +/− 6 and 64 +/− 5 for slow muscle fibres and 76 +/− 10 and 209 +/− 21 for fast muscle fibres at 7 degrees C and 23 degrees C, respectively. Maximum contraction velocities (Vmax, muscle lengths-1), are 0.4 +/− 0.05 and 1.5 +/− 0.1 at 7 degrees C (slow fibres) and 0.6 +/− 0.04 and 1.9 +/− 0.4 at 23 degrees C (fast fibres). All values represent mean +/− S.E. P0 and Vmax at 7 degrees C are around 1.5-2.0 times higher for slow and fast muscle fibres isolated from the cold-acclimated group. Fibres from 7 degrees C-acclimated carp fail to relax completely following maximal activations at 23 degrees C. The resulting Ca-insensitive force component (50–70% P0) is associated with the development of abnormal crossbridge linkages and very slow contraction velocities. Activities of enzymes associated with energy metabolism were determined at a common temperature of 15 degrees C. Marker enzymes of the electron transport system (cytochrome oxidase), citric acid cycle (citrate synthase), fatty acid metabolism (carnitine palmitoyl transferase, beta-hydroxyacyl CoA dehydrogenase) and aerobic glucose utilization (hexokinase) have 30–60% higher activities in slow muscle from cold-acclimated than from warm-acclimated fish. Activities of cytochrome oxidase and citrate synthase in fast muscle are also elevated following acclimation to low temperature. It is concluded that thermal compensation of mechanical power output by carp skeletal muscle is matched by a concomitant increase in the potential to supply aerobically-generated ATP at low temperatures.


1985 ◽  
Vol 119 (1) ◽  
pp. 71-83 ◽  
Author(s):  
C. L. Johnsrude ◽  
P. W. Webb

Net forces and velocities resulting from in situ contractions of the myotomal musculature on one side of the body were measured at the hypural bones. Forces, velocities and power were determined with the body bent into a range of postures typical of those observed during fast-start swimming. For trout averaging 0.178 m in length and 0.0605 kg in body mass, the muscle system exerts a maximum normal force of 2.2N at the base of the caudal fin. This force is equivalent to 11.8 kN m-2 based on the mean cross-sectional area of the myotomal muscle. The maximum velocity was 1.11 m s-1, and the maximum mechanical power output, 0.64 W, or 42.4 W kg-1 muscle. Based on estimates of swimming resistance, these results would suggest acceleration rates of 7.5 to 16.5 m s-2, similar to averages observed during fast-starts. Maximum sprint speeds would range from 6.5 to 17.8 body lengths s-1, spanning the range of maximum speeds reported in the literature. It is suggested that maximum speed is limited by interactions between muscle contraction frequency and endurance. Losses in the mechanical linkages between muscle fibres and propulsive surfaces were estimated at about 50% for power with possibly greater losses in force transmission. Maximum force and power did not vary over the range of postures tested, supporting Alexander's (1969) suggestions that white muscle should contract over a small portion of the resting length of the fibres.


1993 ◽  
Vol 182 (1) ◽  
pp. 191-206 ◽  
Author(s):  
J. D. Altringham ◽  
C. S. Wardle ◽  
C. I. Smith

We describe experiments on isolated, live muscle fibres which simulate their in vivo activity in a swimming saithe (Pollachius virens). Superficial fast muscle fibres isolated from points 0.35, 0.5 and 0.65 body lengths (BL) from the anterior tip had different contractile properties. Twitch contraction time increased from rostral to caudal myotomes and power output (measured by the work loop technique) decreased. Power versus cycle frequency curves of rostral fibres were shifted to higher frequencies relative to those of caudal fibres. In the fish, phase differences between caudally travelling waves of muscle activation and fish bending suggest a change in muscle function along the body. In vitro experiments indicate that in vivo superficial fast fibres of rostral myotomes are operating under conditions that yield maximum power output. Caudal myotomes are active as they are lengthened in vivo and initially operate under conditions which maximise their stiffness, before entering a positive power-generating phase. A description is presented for the generation of thrust at the tail blade by the superficial, fast, lateral muscle. Power generated rostrally is transmitted to the tail by stiffened muscle placed more caudally. A transition zone between power generation and stiffening travels caudally, and all but the most caudal myotomes generate power at some phase of the tailbeat. Rostral power output, caudal force, bending moment and force at the tail blade are all maximal at essentially the same moment in the tailbeat cycle, as the tail blade crosses the swimming track.


1992 ◽  
Vol 70 (6) ◽  
pp. 1173-1179 ◽  
Author(s):  
Paul W. Webb ◽  
Doug H. Hardy ◽  
Vicki L. Mehl

Fast-starts and steady swimming were compared for two piscivorous fishes, the longnose gar (Lepisosteus osseus), which has an integument armored with ganoid scales, and the unarmored tiger musky (Esox sp.). The body was similarly flexed by both species during fast-starts and steady swimming. Therefore, the heavy integument of the gar did not affect flexibility during swimming. Distance traveled in a given elapsed time during fast-starts was lower for the gar, which averaged 65% of the work done by the musky. On the basis of differences in muscle mass, gars would be expected to perform 72% of the work of muskies during a fast-start. The heavier integument of the gar was estimated to contribute about 90% to the reduced fast-start performance. In steady swimming, mechanical power requirements at a given speed were similar for both gar and musky. Therefore, steady swimming costs do not appear to be affected by armor. The critical swimming speed of gars was 1.9 body lengths/s compared with 3.4 body lengths/s for muskies, but the difference could not be attributed to differences in armoring. The slip speed at which gars first began to swim was 1.21 body lengths/s compared with 0.75 body lengths/s for muskies. Higher station-holding performance is probably not important to modern gars and esocids, but may have been advantageous during the early radiation of fishes.


2021 ◽  
Vol 34 (1) ◽  
pp. school
Author(s):  
Hussein A. Saud ◽  
Ilham J.J. Alshami ◽  
Ruth Cooper

The zebrafish Danio rerio is a popular model species  for genetic and early development studies. It is relatively easy to maintain in laboratory, has a high fecundity rate and produces transparent embryos. Here, we characterise muscle development in early life stage zebrafish using paraffin sections of embryos and larvae treated with haematoxylin and eosin staining, and whole mount fluorescent immunohistochemistry. We found variations in the distribution of muscle mass throughout the body, with the greatest proportion of muscle mass found in the tail. Our data also showed for the first time the reaction of antibodies (protein expression) in muscle at early life stages of development. Whole mount fluorescent immunohistochemistry staining with three markers (PAX7, MF20 and F59) suggests that muscle development starts even earlier than previously suggested at the embryonic stage (1 dpf).


1999 ◽  
Vol 202 (6) ◽  
pp. 675-682 ◽  
Author(s):  
J.M. Wakeling ◽  
I.A. Johnston

Fish fast-starts are rapid events caused by the simultaneous onset of muscle activity along one side of the body. Spine curvature and the strain and electromyographic activity in white muscle were measured for fast-starts in the common carp Cyprinus carpio. The first bend of the fast-start was powered by muscle on the concave side: muscle fibres on this side were activated and began shortening simultaneously between the length-specific longitudinal sites 0.3L and 0.56L, where L is total body length. However, there was an increasing delay in the timing of the first peak in body curvature and muscle strain along the length of the body. Modelling studies related the rate of body bending to the muscle torque and hydrodynamic resistance of the fish. The muscle torque produced on the spine was greatest in the central region of the trunk, and this acted against the moments of inertia of the fish mass and added mass of water. It was concluded that a wave of body bending can be generated as a result of the hydrodynamic resistance of the fish despite the initiation of that bending being simultaneous along the length of the body.


1995 ◽  
Vol 198 (1) ◽  
pp. 193-201 ◽  
Author(s):  
T A Beddow ◽  
I A Johnston

Live fibre bundles were isolated from the fast myotomal muscle of short-horned sculpin (Myoxocephalus scorpius L.) and isometric contractile properties and the force­velocity (P­V) relationship determined at 5, 10 and 15 °C. Experiments were carried out on winter- and summer-caught sculpins and on individuals acclimated for 6­8 weeks to either 5 or 15 °C (12 h:12 h light:dark). Maximum tetanic tension (P0) in fibres from 15 °C-acclimated fish increased from 125 kN m-2 at 5 °C to 282 kN m-2 at 15 °C (R10=2.3). For 5 °C-acclimated fish, P0 was 139 kN m-2 at 5 °C, but fell to 78 kN m-2 at 15 °C, consistent with a partial failure of excitation­contraction coupling at high temperatures. Peak force at 15 °C was increased 2.2 times following depolarisation with a high-K+ solution, but was unaffected by the addition of caffeine and/or eserine to the Ringer's solution. The results from winter- and summer-caught fish were similar to those from 5 °C- and 15 °C-acclimated sculpins respectively. In 15 °C-acclimated fish, the power output of muscle fibres calculated from the P­V relationship was 55 W kg-1 at 5 °C and 206 W kg-1 at 15 °C. The P­V relationship at 5 °C was significantly less curved in muscle fibres from 5 °C- than from 15 °C-acclimated fish. After normalizing the curves for P0 and Vmax, it was found that the change in curvature was sufficient to produce a 40 % increase in relative power output at 5 °C in cold-acclimated fish. The maximum contraction speed of muscle fibres at 15 °C was 2.4 times higher in 15 °C- than in 5 °C-acclimated fish. It was concluded that acclimation modifies the contractile properties of fast muscle fibres at both low and high temperatures.


Sign in / Sign up

Export Citation Format

Share Document