Age-dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus

1996 ◽  
Vol 199 (9) ◽  
pp. 2011-2019
Author(s):  
W Gronenberg ◽  
S Heeren ◽  
B Hölldobler

Based on a brief description of the general brain morphology of Camponotus floridanus, development of the brain is examined in ants of different ages (pupa to 10 months). During this period, brain volume increases by approximately 20 % while the antennal lobes and the mushroom body neuropile show a more substantial growth, almost doubling their volume. In addition to the age-dependent changes, the volume of the mushroom body neuropile also increases as a consequence of behavioural activity associated with brood care and foraging. Foraging activity may lead to a more than 50 % additional increase in mushroom body neuropile volume. It is unlikely that the growth of mushroom body neuropile results from cell proliferation because no neurogenesis could be observed in adult ant brains.

2018 ◽  
Author(s):  
Jill R. Crittenden ◽  
Efthimios M. C. Skoulakis ◽  
Elliott. S. Goldstein ◽  
Ronald L. Davis

ABSTRACTMEF2 (myocyte enhancer factor 2) transcription factors are found in the brain and muscle of insects and vertebrates and are essential for the differentiation of multiple cell types. We show that in the fruitfly Drosophila, MEF2 is essential for normal development of wing veins, and for mushroom body formation in the brain. In embryos mutant for D-mef2, there was a striking reduction in the number of mushroom body neurons and their axon bundles were not detectable. D-MEF2 expression coincided with the formation of embryonic mushroom bodies and, in larvae, expression onset was confirmed to be in post-mitotic neurons. With a D-mef2 point mutation that disrupts nuclear localization, we find that D-MEF2 is restricted to a subset of Kenyon cells that project to the α/β, and γ axonal lobes of the mushroom bodies, but not to those forming the α’/β’ lobes. Our findings that ancestral mef2 is specifically important in dopamine-receptive neurons has broad implications for its function in mammalian neurocircuits.


2015 ◽  
Author(s):  
Stephen H Montgomery ◽  
Richard M Merrill ◽  
Swidbert R Ott

Behavioral and sensory adaptations are often based in the differential expansion of brain components. These volumetric differences represent changes in investment, processing capacity and/or connectivity, and can be used to investigate functional and evolutionary relationships between different brain regions, and between brain composition and behavioral ecology. Here, we describe the brain composition of two species of Heliconius butterflies, a long-standing study system for investigating ecological adaptation and speciation. We confirm a previous report of striking mushroom body expansion, and explore patterns of post-eclosion growth and experience-dependent plasticity in neural development. This analysis uncovers age- and experience-dependent post-emergence mushroom body growth comparable to that in foraging hymenoptera, but also identifies plasticity in several other neuropil. An interspecific analysis indicates that Heliconius display remarkable levels of investment in mushroom bodies for a lepidopteran, and indeed rank highly compared to other insects. Our analyses lay the foundation for future comparative and experimental analyses that will establish Heliconius as a useful case study in evolutionary neurobiology.


Zoomorphology ◽  
2021 ◽  
Author(s):  
Patrick Beckers ◽  
Carla Pein ◽  
Thomas Bartolomaeus

AbstractMushroom bodies are known from annelids and arthropods and were formerly assumed to argue for a close relationship of these two taxa. Since molecular phylogenies univocally show that both taxa belong to two different clades in the bilaterian tree, similarity must either result from convergent evolution or from transformation of an ancestral mushroom body. Any morphological differences in the ultrastructure and composition of mushroom bodies could thus indicate convergent evolution that results from similar functional constraints. We here study the ultrastructure of the mushroom bodies, the glomerular neuropil, glia-cells and the general anatomy of the nervous system in Sthenelais boa. The neuropil of the mushroom bodies is composed of densely packed, small diameter neurites that lack individual or clusterwise glia enwrapping. Neurites of other regions of the brain are much more prominent, are enwrapped by glia-cell processes and thus can be discriminated from the neuropil of the mushroom bodies. The same applies to the respective neuronal somata. The glomerular neuropil of insects and annelids is a region of higher synaptic activity that result in a spheroid appearance of these structures. However, while these structures are sharply delimited from the surrounding neuropil of the brain by glia enwrapping in insects, this is not the case in Sthenelais boa. Although superficially similar, there are anatomical differences in the arrangement of glia-cells in the mushroom bodies and the glomerular neuropil between insects and annelids. Hence, we suppose that the observed differences rather evolved convergently to solve similar functional constrains than by transforming an ancestral mushroom body design.


Author(s):  
D. Zaccheo ◽  
F. Amenta

A variety of age-dependent changes affect cerebral vasculature. Morphological changes of the brain microvasculature characterized by microvascular fibrosis , vascular convolutions , thickening or membranous changes of the capillary basal membrane and gliofibrillary proliferation have been reported with aging. These changes may be related with age-dependent impairment in behavioral performance. Increasing evidence suggests that Ca+2 antagonists of the dihydropyridine family, which are used primarily in the therapy of cardiovascular disorders may be useful for treating neurologic diseases including cerebral ischemia, age-related neurodegenerative disorders, senile dementia and epilepsy. This in view of the capability of these compounds to decrease Ca+2 overload which can result in increased cell death.Recent studies have shown that the dihydropyridine Ca2+ antagonists delayed the expression of agerelated microvascular changes in the rat forebrain and sciatic nerve without reducing systolic blood pressure. The present study was designed to assess the influence of long term treatment with the dihydropyridine derivative darodipine [diethyl 4-2,1,3- (benzoxadiazal-4-yl)-l,4-dihydro-2,6-dimethylpyridine- 3,5-dicarboxylate, PY 108-068] on age-related microvascular changes occurring in the rat cerebral cortex and hippocampus. The brain capillary network was investigated using alkaline phosphatase histochemistry associated with image analysis.


2017 ◽  
Vol 36 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Alain Pasquet ◽  
Camille Toscani ◽  
Mylène Anotaux

Abstract In animals, it is known that age affects the abilities of the brain. In spiders, we showed that aging affects web characteristics due to behavioral alterations during web building. In this study, we investigated the effects of age on the associations between morphological changes to the spider brain and changes in web characteristics. The orb web spider Zygiella x-notata (Araneae, Araneidae) was used to test these relationships. Experiments were conducted on young (19 ± 2 days after adult molt, N = 13) and old (146 ± 32 days, N = 20) virgin females. The brain volume decreased with age (by 10%). Age also had an impact on the number of anomalies in the capture area generated during web building. The statistical relationships between the volume of the brain and web characteristics showed that there was an effect of age on both. Our results showed that in spiders, aging affects the brain volume and correlates with characteristics (anomalies) of the web. As web building is the result of complex behavioral processes, we suggest that aging affects spider behavior by causing some brain alterations.


2021 ◽  
Vol 14 (1) ◽  
pp. dmm046235
Author(s):  
Nicole M. Novielli-Kuntz ◽  
Eric R. Press ◽  
Kevin Barr ◽  
Marco A. M. Prado ◽  
Dale W. Laird

ABSTRACTConnexin 30 (Cx30; also known as Gjb6 when referring to the mouse gene) is expressed in ependymal cells of the brain ventricles, in leptomeningeal cells and in astrocytes rich in connexin 43 (Cx43), leading us to question whether patients harboring GJB6 mutations exhibit any brain anomalies. Here, we used mice harboring the human disease-associated A88V Cx30 mutation to address this gap in knowledge. Brain Cx30 levels were lower in male and female Cx30A88V/A88V mice compared with Cx30A88V/+ and Cx30+/+ mice, whereas Cx43 levels were lower only in female Cx30 mutant mice. Characterization of brain morphology revealed a disrupted ependymal cell layer, significant hydrocephalus and enlarged ventricles in 3- to 6-month-old adult male and female Cx30A88V/A88V mice compared with Cx30A88V/+ or Cx30+/+ sex-matched littermate mice. To determine the functional significance of these molecular and morphological changes, we investigated a number of behavioral activities in these mice. Interestingly, only female Cx30A88V/A88V mice exhibited abnormal behavior compared with all other groups. Cx30A88V/A88V female mice demonstrated increased locomotor and exploratory activity in both the open field and the elevated plus maze. They also exhibited dramatically reduced ability to learn the location of the escape platform during Morris water maze training, although they were able to swim as well as other genotypes. Our findings suggest that the homozygous A88V mutation in Cx30 causes major morphological changes in the brain of aging mice, possibly attributable to an abnormal ependymal cell layer. Remarkably, these changes had a more pronounced consequence for cognitive function in female mice, which is likely to be linked to the dysregulation of both Cx30 and Cx43 levels in the brain.


1998 ◽  
Vol 5 (1) ◽  
pp. 90-101 ◽  
Author(s):  
Dagmar Malun

In the honeybee the mushroom bodies are prominent neuropil structures arranged as pairs in the dorsal protocerebrum of the brain. Each mushroom body is composed of a medial and a lateral subunit. To understand their development, the proliferation pattern of mushroom body intrinsic cells, the Kenyon cells, were examined during larval and pupal stages using the bromodeoxyuridine (BrdU) technique and chemical ablation with hydroxyurea.By larval stage 1, ∼40 neuroblasts are located in the periphery of the protocerebrum. Many of these stem cells divide asymmetrically to produce a chain of ganglion mother cells. Kenyon cell precursors underly a different proliferation pattern. With the beginning of larval stage 3, they are arranged in two large distinct cell clusters in each side of the brain. BrdU incorporation into newly synthesized DNA and its immunohistochemical detection show high mitotic activity in these cell clusters that lasts until mid-pupal stages. The uniform diameter of cells, the homogeneous distribution of BrdU-labeled nuclei, and the presence of equally dividing cells in these clusters indicate symmetrical cell divisions of Kenyon cell precursors.Hydroxyurea applied to stage 1 larvae caused the selective ablation of mushroom bodies. Within these animals a variety of defects were observed. In the majority of brains exhibiting mushroom body defects, either one mushroom body subunit on one or on both sides, or three or four subunits (e.g., complete mushroom body ablation) were missing. In contrast, partial ablation of mushroom body subunits resulting in small Kenyon cell clusters and peduncles was observed very rarely. These findings indicate that hydroxyurea applied during larval stage 1 selectively deletes Kenyon stem cells. The results also show that each mushroom body subunit originates from a very small number of stem cells and develops independently of its neighboring subunit.


2018 ◽  
Author(s):  
Radostina Lyutova ◽  
Maximilian Pfeuffer ◽  
Dennis Segebarth ◽  
Jens Habenstein ◽  
Mareike Selcho ◽  
...  

1.AbstractDopaminergic neurons in the brain of theDrosophilalarva play a key role in mediating reward information to the mushroom bodies during appetitive olfactory learning and memory. Using optogenetic activation of Kenyon cells we provide evidence that a functional recurrent signaling loop exists between Kenyon cells and dopaminergic neurons of the primary protocerebral anterior (pPAM) cluster. An optogenetic activation of Kenyon cells paired with an odor is sufficient to induce appetitive memory, while a simultaneous impairment of the dopaminergic pPAM neurons abolishes memory expression. Thus, dopaminergic pPAM neurons mediate reward information to the Kenyon cells, but in turn receive feedback from Kenyon cells. We further show that the activation of recurrent signaling routes within mushroom body circuitry increases the persistence of an odor-sugar memory. Our results suggest that sustained activity in a neuronal circuitry is a conserved mechanism in insects and vertebrates to consolidate memories.


Physiology ◽  
2010 ◽  
Vol 25 (6) ◽  
pp. 338-346 ◽  
Author(s):  
Germain U. Busto ◽  
Isaac Cervantes-Sandoval ◽  
Ronald L. Davis

Studies of olfactory learning in Drosophila have provided key insights into the brain mechanisms underlying learning and memory. One type of olfactory learning, olfactory classical conditioning, consists of learning the contingency between an odor with an aversive or appetitive stimulus. This conditioning requires the activity of molecules that can integrate the two types of sensory information, the odorant as the conditioned stimulus and the aversive or appetitive stimulus as the unconditioned stimulus, in brain regions where the neural pathways for the two stimuli intersect. Compelling data indicate that a particular form of adenylyl cyclase functions as a molecular integrator of the sensory information in the mushroom body neurons. The neuronal pathway carrying the olfactory information from the antennal lobes to the mushroom body is well described. Accumulating data now show that some dopaminergic neurons provide information about aversive stimuli and octopaminergic neurons about appetitive stimuli to the mushroom body neurons. Inhibitory inputs from the GABAergic system appear to gate olfactory information to the mushroom bodies and thus control the ability to learn about odors. Emerging data obtained by functional imaging procedures indicate that distinct memory traces form in different brain regions and correlate with different phases of memory. The results from these and other experiments also indicate that cross talk between mushroom bodies and several other brain regions is critical for memory formation.


Author(s):  
Jochen Seitz ◽  
Katharina Bühren ◽  
Georg G. von Polier ◽  
Nicole Heussen ◽  
Beate Herpertz-Dahlmann ◽  
...  

Objective: Acute anorexia nervosa (AN) leads to reduced gray (GM) and white matter (WM) volume in the brain, which however improves again upon restoration of weight. Yet little is known about the extent and clinical correlates of these brain changes, nor do we know much about the time-course and completeness of their recovery. Methods: We conducted a meta-analysis and a qualitative review of all magnetic resonance imaging studies involving volume analyses of the brain in both acute and recovered AN. Results: We identified structural neuroimaging studies with a total of 214 acute AN patients and 177 weight-recovered AN patients. In acute AN, GM was reduced by 5.6% and WM by 3.8% compared to healthy controls (HC). Short-term weight recovery 2–5 months after admission resulted in restitution of about half of the GM aberrations and almost full WM recovery. After 2–8 years of remission GM and WM were nearly normalized, and differences to HC (GM: –1.0%, WM: –0.7%) were no longer significant, although small residual changes could not be ruled out. In the qualitative review some studies found GM volume loss to be associated with cognitive deficits and clinical prognosis. Conclusions: GM and WM were strongly reduced in acute AN. The completeness of brain volume rehabilitation remained equivocal.


Sign in / Sign up

Export Citation Format

Share Document