Slow inhibition of Na+ current in crayfish axons by 2-(1non-8enyl)-5-(1non-8enyl)pyrrolidine (Pyr9), a synthetic derivative of an ant venom alkaloid

1997 ◽  
Vol 200 (15) ◽  
pp. 2097-2106
Author(s):  
B Lebrun ◽  
D Cattaert

2,5-Dialkylpyrrolidines present in the venom of ants from the genus Monomorium are natural insecticides causing a flaccid paralysis. The mechanism of action of 2-(1non-8enyl)-5-(1non-8enyl)pyrrolidine (Pyr9), a synthetic derivative of 2,5-dialkylpyrrolidines, has been investigated in vitro on preparations of the ventral nerve cord of the crayfish Procambarus clarkii. Our results clearly indicate that Pyr9 blocks spike conduction without affecting the resting potential. Voltage-clamp experiments carried out on axons demonstrate that this blockade is due to a dual expression of Na+ current inhibition: a tonic inhibition developing slowly (90 % of inhibition within 20 min for a Pyr9 concentration of 50 µmol l-1) and independently of stimulation, and a phasic inhibition developing during repetitive stimulation (5 Hz), the accumulation kinetics of which is 0.072 pulse-1 at 5 Hz, according to the Courtney model. These findings suggest that tonic and phasic inhibition are due to different mechanisms. In addition, Pyr9 induces a shift of the Na+ inactivation curve towards more hyperpolarized potentials, which is in agreement with a higher affinity of Pyr9 for inactivated than for resting Na+ channels.

1996 ◽  
Vol 75 (6) ◽  
pp. 2397-2404 ◽  
Author(s):  
Y. Oka

1. Endogenous pacemaker activities are important for the putative neuromodulator functions of the gonadotropin-releasing hormone (GnRH)-immunoreactive terminal nerve (TN) cells. Previously we have shown by current-clamp analysis that a tetrodotoxin (TTX)-resistant persistent Na+ current, INa(slow), plays an important role in the generation of pacemaker potentials of TN-GnRH cells. The present study investigates electrophysiological characteristics of INa(slow) by using the whole cell patch-clamp technique in in vitro whole-brain preparation of a small fish brain. 2. TN-GnRH cells lie immediately beneath the ventral meningeal membrane; the cells could thus be exposed and visualized by gently removing the meningeal membrane. INa(slow) currents were isolated pharmacologically by blocking K+ currents, Ca2+ currents, and conventional fast Na+ currents. 3. INa(slow) was characterized by resistance to TTX blockade, dependence on external Na+, slow activation, very slow and little inactivation, and wide overlap of activation and inactivation curves near the resting potential. These characteristics are distinct from those of conventional fast Na+ current, and are relevant for the generation of persistent inward currents necessary for the pacemaker activity of TN-GnRH cells.


1994 ◽  
Vol 71 (4) ◽  
pp. 1361-1372 ◽  
Author(s):  
B. Strohmann ◽  
D. W. Schwarz ◽  
E. Puil

1. We studied the frequency responses of neurons in the nucleus ovoidalis (OV), the principal thalamic auditory relay nucleus of the chicken, in the subthreshold range of membrane potentials. The frequency response is the impedance amplitude profile evident in the voltage response to a broadband stimulus. The stimulus was a deterministic periodic current input of small amplitude, sweeping through a specified frequency range. We used whole-cell, tight-seal recording techniques in slices to study the voltage responses and membrane properties in current and voltage clamp. 2. Generally, low-frequency resonant humps with peak impedances of approximately 6 Hz characterized the frequency responses of OV neurons. This resonance was the principal determinant for frequency selectivity in the majority of OV neurons expressing only a tonic mode of firing. 3. The 6-Hz resonance was voltage dependent and most distinct where the activation ranges of a hyperpolarization activated inward current (IH) and a persistent Na+ current tend to overlap. The potential range for optimal resonance often included the resting potential. 4. Application of the Na+ current antagonist, tetrodotoxin, blocked the persistent Na+ current and most of the resonant hump at depolarized levels but did not affect the resonant peak along the frequency axis. Thus the persistent Na+ current may serve to amplify the resonance. 5. Extracellular application of Cs+, but not Ba2+, blocked a voltage sag during pulsed hyperpolarization as well as the IH current. Application of Cs+ also eliminated the 6-Hz resonance. An IH seems, therefore, instrumental for the resonance. 6. A minority of neurons that expressed low-threshold Ca2+ spikes and burst firing at hyperpolarized states displayed voltage oscillations at 2-4 Hz, spontaneously or in response to pulsatile stimuli. Application of Ni2+ blocked the oscillations and the low-threshold spikes, presumably produced by a T-type Ca2+ current. The resonance at 6 Hz, however, was only slightly affected by Ni2+. A T-type current, therefore, is critical for the 2- to 4-Hz oscillations. 7. Membrane resonance may dominate the power spectrum of subthreshold potential fluctuations. The resonance demonstrated in vitro may be stabilized by experimental procedures; its frequency may be different and more variable in vivo. Resonances in thalamic neurons may play a role in auditory signal processing in birds.


1992 ◽  
Vol 68 (4) ◽  
pp. 985-1000 ◽  
Author(s):  
H. Sontheimer ◽  
J. A. Black ◽  
B. R. Ransom ◽  
S. G. Waxman

1. Na+ and K+ channel expression was studied in cultured astrocytes derived from P--0 rat spinal cord using whole cell patch-clamp recording techniques. Two subtypes of astrocytes, pancake and stellate, were differentiated morphologically. Both astrocyte types showed Na+ channels and up to three forms of K+ channels at certain stages of in vitro development. 2. Both astrocyte types showed pronounced K+ currents immediately after plating. Stellate but not pancake astrocytes additionally showed tetrodotoxin (TTX)-sensitive inward Na+ currents, which displayed properties similar to neuronal Na+ currents. 3. Within 4-5 days in vitro (DIV), pancake astrocytes lost K(+)-current expression almost completely, but acquired Na+ currents in high densities (estimated channel density approximately 2-8 channels/microns2). Na+ channel expression in these astrocytes is approximately 10- to 100-fold higher than previously reported for glial cells. Concomitant with the loss of K+ channels, pancake astrocytes showed significantly depolarized membrane potentials (-28.1 +/- 15.4 mV, mean +/- SD), compared with stellate astrocytes (-62.5 +/- 11.9 mV, mean +/- SD). 4. Pancake astrocytes were capable of generating action-potential (AP)-like responses under current clamp, when clamp potential was more negative than resting potential. Both depolarizing and hyperpolarizing current injections elicited overshooting responses, provided that cells were current clamped to membrane potentials more negative than -70 mV. Anode-break spikes were evoked by large hyperpolarizations (less than -150 mV). AP-like responses in these hyperpolarized astrocytes showed a time course similar to neuronal APs under conditions of low K+ conductance. 5. In stellate astrocytes, AP-like responses were not observed, because the K+ conductance always exceeded Na+ conductance by at least a factor of 3. Thus stellate spinal cord astrocyte membranes are stabilized close to EK as previously reported for hippocampal astrocytes. 6. It is concluded that spinal cord pancake astrocytes are capable of synthesizing Na+ channels at densities that can, under some conditions, support electrogenesis. In vivo, however, AP-like responses are unlikely to occur because the cells' resting potential is too depolarized to allow current activation. Thus the absence of electrogenesis in astrocytes may be explained by two mechanisms: 1) a low Na-to-K conductance ratio, as in stellate spinal cord astrocytes and in other previously studied astrocyte preparations; or, 2) as described in detail in the companion paper, a mismatch between the h infinity curve and resting potential, which results in Na+ current inactivation in spinal cord pancake astrocytes.


2004 ◽  
Vol 92 (5) ◽  
pp. 3134-3141 ◽  
Author(s):  
Yuki Hayashida ◽  
Andrew T. Ishida

We tested whether dopamine receptor activation modulates the voltage-gated Na+ current of goldfish retinal ganglion cells, using a fast voltage-clamp amplifier, perforated-patch whole cell mode, and a physiological extracellular Na+ concentration. As found in other cells, activators of D1-type dopamine receptors and of protein kinase A reduced the amplitude of current activated by depolarizations from resting potential without altering the current kinetics or activation range. However, D1-type dopamine receptor activation also accelerated the rate of entry into inactivation during subthreshold depolarizations and slowed the rate of recovery from inactivation after single, brief depolarizations. Our results provide the first evidence in any preparation that D1-type receptor activation can produce both of these latter effects.


1997 ◽  
Vol 78 (5) ◽  
pp. 2235-2245 ◽  
Author(s):  
Xiao Wen Fu ◽  
Borys L. Brezden ◽  
Shu Hui Wu

Fu, Xiao Wen, Borys L. Brezden, and Shu Hui Wu. Hyperpolarization-activated inward current in neurons of the rat's dorsal nucleus of the lateral lemniscus in vitro. J. Neurophysiol. 78: 2235–2245, 1997. The hyperpolarization-activated current ( I h) underlying inward rectification in neurons of the rat's dorsal nucleus of the lateral lemniscus (DNLL) was investigated using whole cell patch-clamp techniques. Patch recordings were made from DNLL neurons of young rats (21–30 days old) in 400 μm tissue slices. Under current clamp, injection of negative current produced a graded hyperpolarization of the cell membrane, often with a gradual sag in the membrane potential toward the resting value. The rate and magnitude of the sag depended on the amount of hyperpolarizing current. Larger current resulted in a larger and faster decay of the voltage. Under voltage clamp, hyperpolarizing voltage steps elicited a slowly activating inward current that was presumably responsible for the sag observed in the voltage response to a steady hyperpolarizing current recorded under current clamp. Activation of the inward current ( I h) was voltage and time dependent. The current just was seen at a membrane potential of −70 mV and was activated fully at −140 mV. The voltage value of half-maximal activation of I h was −78.0 ± 6.0 (SE) mV. The rate of I h activation was best approximated by a single exponential function with a time constant that was voltage dependent, ranging from 276 ± 27 ms at −100 mV to 186 ± 11 ms at −140 mV. Reversal potential ( E h) of I h current was more positive than the resting potential. Raising the extracellular potassium concentration shifted E h to a more depolarized value, whereas lowering the extracellular sodium concentration shifted E h in a more negative direction. I h was sensitive to extracellular cesium but relatively insensitive to extracellular barium. The current amplitude near maximal-activation (about −140 mV) was reduced to 40% of control by 1 mM cesium but was reduced to only 71% of control by 2 mM barium. When the membrane potential was near the resting potential (about −60 mV), cesium had no effect on the membrane potential, current-evoked firing rate and input resistance but reduced the spontaneous firing. When the membrane potential was more negative than −70 mV, cesium hyperpolarized the cell, decreased current-evoked firing and increased the input resistance. I h in DNLL neurons does not contribute to the normal resting potential but may enhance the extent of excitation, thereby making the DNLL a consistently powerful inhibitory source to upper levels of the auditory system.


2006 ◽  
Vol 95 (5) ◽  
pp. 2832-2844 ◽  
Author(s):  
Oscar Sacchi ◽  
Maria Lisa Rossi ◽  
Rita Canella ◽  
Riccardo Fesce

A biophysical description of the axotomized rat sympathetic neuron is reported, obtained by the two-electrode voltage-clamp technique in mature, intact superior cervical ganglia in vitro. Multiple aspects of neuron functioning were tested. Synaptic conductance activated by the whole presynaptic input decreased to 29% of the control value (0.92 μS per neuron) 1 day after axotomy and to 18% after 3 days. Despite the decrease in amplitude of the macroscopic current, miniature excitatory postsynaptic current (mEPSC) mean conductance, acetylcholine (ACh) equilibrium potential, and EPSC decay time constant were unaffected. Synaptic efficacy was tested during paired-pulse or maintained stimulation (5, 10, and 15 Hz, 10-s duration). Quantal release in axotomized neurons was preserved during the tetanus despite the reduction of the initial EPSC amplitude, suggesting that ACh secretion depended on the number of surviving synapses; each of them exhibited dynamic behavior during trains similar to that of normal synapses. Facilitation of EPSC amplitude was noted in 2-day axotomized neurons during the first few impulses in the train. Voltage-dependent potassium currents (the delayed IKD and the transient IA) exhibited an early drastic decrease in peak amplitude; these effects persisted 7 days after axotomy. Marked changes in IA kinetics occurred after injury: the steady-state inactivation curve shifted by up to +17 mV toward positive potentials and the voltage sensitivity of inactivation removal became steeper. IA impairment was reflected in a reduced inward threshold charge for discharge and reduced spike repolarization rate. Synaptic and somatic data were applied in a mathematical model to describe the progressive decrease in the safety factor, and the eventual failure of ganglionic transmission after axotomy.


1982 ◽  
Vol 48 (6) ◽  
pp. 1321-1335 ◽  
Author(s):  
M. J. Gutnick ◽  
B. W. Connors ◽  
D. A. Prince

1. The cellular mechanisms underlying interictal epileptogenesis have been examined in an in vitro slice preparation of guinea pig neocortex. Penicillin or bicuculline was applied to the tissue, and intracellular recordings were obtained from neurons and glia. 2. Following convulsant application, stimulation could elicit a short-latency excitatory postsynaptic potential (EPSP) and a large, longer latency depolarization shift (DS) in single neurons. DSs in neurons of the slice were very similar to those evoked in neurons of neocortex in vivo in that they displayed an all-or-none character, large shifts in latency during repetitive stimuli, long afterpotentials, and a prolonged refractory period. In contrast to epileptogenesis produced by penicillin in intact cortex, neither spontaneous DSs nor ictal episodes were observed in neocortical slices. 3. In simultaneous recordings from pairs of neurons within the same cortical column, DS generation and latency shifts were invariably synchronous. DS generation in neurons was also coincident with large, paroxysmal increases of extracellular [K+], as indicated by simultaneous recordings from glia. 4. When polarizing currents were applied to neurons injected with the local anesthetic QX-314, the DS amplitude varied monotonically and had an extrapolated reversal potential near 0 mV. In neurons injected with the K+-current blocker Cs+, large displacements of membrane potential were possible, and both the short-latency EPSP and the peak of the DS diminished completely at about 0 mV. At potentials positive to this, the short-latency EPSP was reversed, and the DS was replaced by a paroxysmal hyperpolarization whose rise time and peak latency were prolonged compared to the DS evoked at resting potential. The paroxysmal hyperpolarization probably represents the prolonged activation of the impaled neuron by EPSPs. 5. Voltage-dependent components, including slow spikes, appeared to contribute to generation of the DS at resting potential in Cs+-filled cells, and these components were blocked during large depolarizations. 6. The results suggest that DS generation in single neocortical neurons occurs during synchronous synaptic activation of a large group of cells. DS onset in a given neuron is determined by the timing of a variable-latency excitatory input that differs from the short-latency EPSP. The DS slow envelope appears to be generated by long-duration excitatory synaptic currents and may be modulated by intrinsic voltage-dependent membrane conductances. 7. We present a hypothesis for the initiation of the DS, based on the anatomical and physiological organization of the intrinsic neocortical circuits.


2002 ◽  
Vol 87 (5) ◽  
pp. 2624-2628 ◽  
Author(s):  
Zoltan Nusser ◽  
Istvan Mody

In some nerve cells, activation of GABAA receptors by GABA results in phasic and tonic conductances. Transient activation of synaptic receptors generates phasic inhibition, whereas tonic inhibition originates from GABA acting on extrasynaptic receptors, like in cerebellar granule cells, where it is thought to result from the activation of extrasynaptic GABAA receptors with a specific subunit composition (α6βxδ). Here we show that in adult rat hippocampal slices, extracellular GABA levels are sufficiently high to generate a powerful tonic inhibition in δ subunit–expressing dentate gyrus granule cells. In these cells, the mean tonic current is approximately four times larger than that produced by spontaneous synaptic currents occurring at a frequency of ∼10 Hz. Antagonizing the GABA transporter GAT-1 with NO-711 (2.5 μM) selectively enhanced tonic inhibition by 330% without affecting the phasic component. In contrast, by prolonging the decay of inhibitory postsynaptic currents (IPSCs), the benzodiazepine agonist zolpidem (0.5 μM) augmented phasic inhibition by 66%, while leaving the mean tonic conductance unchanged. These results demonstrate that a tonic GABAA receptor–mediated conductance can be recorded from dentate gyrus granule cells of adult rats in in vitro slice preparations. Furthermore, we have identified distinct pharmacological tools to selectively modify tonic and phasic inhibitions, allowing future studies to investigate their specific roles in neuronal function.


2018 ◽  
Author(s):  
S. Romanenko ◽  
A. R. Harvey ◽  
L Hool ◽  
R. Begley ◽  
S. Fan ◽  
...  

AbstractDue to new applications such as wireless communications, security scanning, and imaging the presence of artificially generated high frequency (30-300 GHz) millimetre-wave (MMW) signals in the environment is increasing. Although safe exposure levels have been set by studies involving direct thermal damage to tissue, there is evidence that MMWs can have an impact on cellular function, including neurons. Earlier in vitro studies have shown that exposure levels well below the recommended safe limit of 1mW/cm2 cause changes in the action potential (AP) firing rate, resting potential, and AP pulse shape of sensory neurons in leech preparations, as well as alter neuronal properties in rat cortical brain slices; these effects differ from changes induced by direct heating. In this paper we examine continuous MMW power (up to 80 mW/cm2 at 60 GHz) and evaluate the responses in the thermosensitive primary nociceptors of the medicinal leech (genus Richardsonianus Australis). The results show that MMW exposure causes an almost two-fold decrease in the threshold for activation of the AP compared with conductive heating (3.6±0.4 mV vs. 6.5±0.4 mV respectively). Our analysis suggests that MMW exposure mediated threshold alterations are not caused by enhancement of voltage gated sodium and potassium conductance. Moreover, it appears that MMW exposure has a modest suppressing effect on membrane excitability. We propose that the reduction in AP threshold can be attributed to sensitization of the TRPV1-like receptor in the leech nociceptor. In silico modelling supported the experimental findings. Our results provide evidence that MMW exposure stimulates specific receptor responses that differ from direct conductive heating, fostering the need for additional studies.


Sign in / Sign up

Export Citation Format

Share Document