Electrophysiology of the in situ contractile vacuole complex of Paramecium reveals its membrane dynamics and electrogenic site during osmoregulatory activity.

1998 ◽  
Vol 201 (3) ◽  
pp. 451-460 ◽  
Author(s):  
T Tominaga ◽  
R D Allen ◽  
Y Naitoh

In the freshwater protozoan Paramecium multomicronucleatum, excess cytosolic water, acquired osmotically, is segregated and expelled to the cell exterior through the activity of the contractile vacuole complex. This process keeps the cell volume constant. The electrophysiological parameters of the organelle were measured in situ using a fine-tipped microelectrode inserted into the contractile vacuole, the exocytotic vesicle of the organelle to which the segregated fluid is transported before being expelled to the exterior. The input capacitance decreased markedly immediately before fluid expulsion and regained its previous value when fluid filling resumed after fluid expulsion. This change in the capacitance proved that the contractile vacuole became disconnected from its radial arms, which project from the vacuole, before fluid expulsion occurred and then reconnected with the arms after fluid expulsion. A positive electrical potential was recorded from the contractile vacuole only when it was connected to the radial arms. This implies that the electrogenic mechanism resides exclusively in the radial arms and supports the idea that the decorated spongiomes, V-type proton-pump-covered terminal tubules of the radial arms that end blindly in the cytosol, are electrogenic. The linear current­voltage relationship of the contractile vacuole membrane also implies that few voltage-activated ion channels are present in the membrane. To explain the movement of water into the contractile vacuole complex, we favour the hypothesis that the potential generated across the decorated spongiome membrane can be used to drive counter-anions from the cytosol into the lumen of the complex. The anions could then act as an osmolite to pull cytosolic water into the lumen of the organelle.

1999 ◽  
Vol 112 (21) ◽  
pp. 3733-3745 ◽  
Author(s):  
T. Tominaga ◽  
Y. Naitoh ◽  
R.D. Allen

The contractile vacuole complex of the fresh water protozoan Paramecium multimicronucleatum exhibits periodic exocytotic activity. This keeps cytosolic osmolarity at a constant value. The contractile vacuole, the central exocytotic vesicle of the complex, becomes disconnected from its surrounding radial arms and rounds before its fluid content is expelled. We previously proposed a hypothesis that the rounding of the contractile vacuole corresponds to an increase in its membrane tension and that a periodic increase in membrane tension governs the exocytotic cycle. We also proposed a hypothesis that transformation of excess planar membrane of the contractile vacuole into 40 nm diameter tubules, that remain continuous with the contractile vacuole membrane, is a primary cause for the tension development in the planar membrane. In order to investigate tension development further, we have examined electron microscopically the contractile vacuole membrane at the rounding phase. To do this, we developed a computer-aided system to fix the cell precisely at the time that the contractile vacuole exhibited rounding. In this system a decrease in the electrical potential across the contractile vacuole membrane that accompanied the vacuole's rounding was monitored through a fine-tipped microelectrode inserted directly into the in vivo contractile vacuole. A decrease in membrane potential was used to generate an electric signal that activated an injector for injecting a fixative through a microcapillary against the cell at the precise time of rounding. Subsequent electron micrographs of the contractile vacuole membrane clearly demonstrated that numerous approximately 40 nm membrane-bound tubules formed in the vicinity of the vacuole's microtubule ribbons when the vacuole showed rounding. This finding suggested that membrane tubulation was the cause for topographical isolation of excess membrane from the planar membrane during the periodic rounding of the contractile vacuole. This together with stereo-pair images of the contractile vacuole complex membranes suggested that the microtubule ribbons were intimately involved in enhancing this membrane tubulation activity. Electron micrographs of the contractile vacuole complexes also showed that decorated tubules came to lie abnormally close to the contractile vacuole in these impaled cells. This suggested that the contractile vacuole was capable of utilizing the smooth spongiome membrane that lies around the ampullae and the collecting canals to increase its size.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Shigetomo Suyama ◽  
Alexandra Ralevski ◽  
Zhong-Wu Liu ◽  
Marcelo O Dietrich ◽  
Toshihiko Yada ◽  
...  

POMC neurons integrate metabolic signals from the periphery. Here, we show in mice that food deprivation induces a linear current-voltage relationship of AMPAR-mediated excitatory postsynaptic currents (EPSCs) in POMC neurons. Inhibition of EPSCs by IEM-1460, an antagonist of calcium-permeable (Cp) AMPARs, diminished EPSC amplitude in the fed but not in the fasted state, suggesting entry of GluR2 subunits into the AMPA receptor complex during food deprivation. Accordingly, removal of extracellular calcium from ACSF decreased the amplitude of mEPSCs in the fed but not the fasted state. Ten days of high-fat diet exposure, which was accompanied by elevated leptin levels and increased POMC neuronal activity, resulted in increased expression of Cp-AMPARs on POMC neurons. Altogether, our results show that entry of calcium via Cp-AMPARs is inherent to activation of POMC neurons, which may underlie a vulnerability of these neurons to calcium overload while activated in a sustained manner during over-nutrition.


2016 ◽  
Vol 45 (2) ◽  
pp. 110-112
Author(s):  
Zhixu Zhou ◽  
Linwei Li ◽  
Ning Yan ◽  
Lei Du ◽  
Changshan Sun ◽  
...  

2002 ◽  
Vol 205 (20) ◽  
pp. 3261-3270 ◽  
Author(s):  
Heidi K. Grønlien ◽  
Christian Stock ◽  
Marilynn S. Aihara ◽  
Richard D. Allen ◽  
Yutaka Naitoh

SUMMARYThe electric potential of the contractile vacuole (CV) of Paramecium multimicronucleatum was measured in situ using microelectrodes,one placed in the CV and the other (reference electrode) in the cytosol of a living cell. The CV potential in a mechanically compressed cell increased in a stepwise manner to a maximal value (approximately 80 mV) early in the fluid-filling phase. This stepwise change was caused by the consecutive reattachment to the CV of the radial arms, where the electrogenic sites are located. The current generated by a single arm was approximately 1.3×10-10 A. When cells adapted to a hypotonic solution were exposed to a hypertonic solution, the rate of fluid segregation, RCVC, in the contractile vacuole complex (CVC) diminished at the same time as immunological labelling for V-ATPase disappeared from the radial arms. When the cells were re-exposed to the previous hypotonic solution, the CV potential, which had presumably dropped to near zero after the cell's exposure to the hypertonic solution, gradually returned to its maximum level. This increase in the CV potential occurred in parallel with the recovery of immunological labelling for V-ATPase in the radial arm and the resumption of RCVC or fluid segregation. Concanamycin B, a potent V-ATPase inhibitor, brought about significant decreases in both the CV potential and RCVC. We confirm that (i) the electrogenic site of the radial arm is situated in the decorated spongiome, and (ii) the V-ATPase in the decorated spongiome is electrogenic and is necessary for fluid segregation in the CVC. The CV potential remained at a constant high level(approximately 80 mV), whereas RCVC varied between cells depending on the osmolarity of the adaptation solution. Moreover, the CV potential did not change even though RCVC increased when cells adapted to one osmolarity were exposed to a lower osmolarity, implying that RCVC is not directly correlated with the number of functional V-ATPase complexes present in the CVC.


1996 ◽  
Vol 270 (6) ◽  
pp. C1807-C1814 ◽  
Author(s):  
L. Liu ◽  
S. A. Simon

Nicotine and capsaicin produce many similar physiological responses that include pain, irritation, and vasodilation. To determine whether neuronal nicotine acetylcholine receptors (nAChR) are present on capsaicin-sensitive neurons, whole cell patch-clamp recordings were performed on rat trigeminal ganglion cells. It was found that approximately 20% of the total number of neurons tested was activated by both 100 microM nicotine and 1 nM capsaicin. Other subsets of neurons were activated by only one of these compounds, whereas a fourth subset was not activated by either compound. At -60 mV, the magnitude of the capsaicin-activated currents was about three times larger than the magnitude of the nicotine-activated currents. The current-voltage relationship of the nAChR exhibited marked rectification, such that for voltages > or = 0 mV the current was essentially zero. In contrast, the current-voltage relationship of the capsaicin-activated current was ohmic from +/- 60 mV. These data indicate the existence of subsets of capsaicin-sensitive afferent neurons.


2016 ◽  
Vol 42 (5) ◽  
pp. 703-709 ◽  
Author(s):  
Yosai Mori ◽  
Kimiya Shimizu ◽  
Keiichiro Minami ◽  
Kazutaka Kamiya ◽  
Nobuyuki Shoji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document