An olfactory-specific glutathione-S-transferase in the sphinx moth Manduca sexta

1999 ◽  
Vol 202 (12) ◽  
pp. 1625-1637 ◽  
Author(s):  
M.E. Rogers ◽  
M.K. Jani ◽  
R.G. Vogt

Insect antennae have a primary function of detecting odors including sex pheromones and plant volatiles. The assumption that genes uniquely expressed in these antennae have an olfactory role has led to the identification of several genes that are integral components of odorant transduction. In the present study, differential display polymerase chain reaction (ddPCR) was used to isolate 25 antennal-specific mRNAs from the male sphinx moth Manduca sexta. Northern blot analyses revealed that one clone, designated G7-9, was antennal-specific and was highly enriched in male antennae relative to female antennae. In situ hybridization indicated that G7-9 expression was restricted to a spatial domain of the olfactory epithelium occupied exclusively by sex-pheromone-sensitive olfactory sensilla. Amino acid homology and phylogenetic analyses identified G7-9 as a glutathione-S-transferase (GST); we have named the full-length clone GST-msolf1. GSTs are known to function primarily in the detoxification of noxious compounds. Spectrophotometric and chromatographic analyses of total GST activity indicate that the endogenous GSTs of male and female antennae can modify trans-2-hexenal, a plant-derived green leaf aldehyde known to stimulate the olfactory system of M. sexta. The restricted localization of GST-msolf1 to sex-pheromone-sensitive sensilla, the fact that the sex pheromone of M. sexta consists of a complex mixture of aldehyde components, and the observation that antennal GSTs can modify an aldehyde odorant suggest that GST-msolf1 may have a role in signal termination. In the light of the more commonly observed role of GSTs in xenobiotic metabolism, we propose that GST-msolf1 may play a dual role of protecting the olfactory system from harmful xenobiotics and inactivating aldehyde odorants, especially components of the M. sexta sex pheromone.

Author(s):  
Souad El Gengaihi ◽  
Doha H. Abou Baker

Interest in the biological role of bioactive compounds present in medicinal herbs has increased over the last years. Of particular interest are plants that have an anti-Alzheimer activities. Several plants can be useful for Alzheimer (AD) management. Such as these which have anti-inflammatory activity, acetylcholinesterase (AChE) inhibitory action, antiapoptotic, slow the aggregation of amyloid peptide and antioxidant activities. Grape seed extract (GSE) is a complex mixture of several compounds, mostly represented by polyphenols and flavonoids. Their consumption is safe and is recognized to exert several health benefits. GS flavonoids have been associated with the reduced risk of chronic diseases, we present some findings on the potential benefits of GSE for the treatment of AD.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 649
Author(s):  
Marco Capolupo ◽  
Paola Valbonesi ◽  
Elena Fabbri

The ocean contamination caused by micro- and nano-sized plastics is a matter of increasing concern regarding their potential effects on marine organisms. This study compared the effects of a 21-day exposure to 1.5, 15, and 150 ng/L of polystyrene microplastics (PS-MP, 3-µm) and nanoplastics (PS-NP, 50-nm) on a suite of biomarkers measured in the Mediterranean mussel Mytilus galloprovincialis. Endpoints encompassed immunological/lysosomal responses, oxidative stress/detoxification parameters, and neurotoxicological markers. Compared to PS-MP, PS-NP induced higher effects on lysosomal parameters of general stress. Exposures to both particle sizes increased lipid peroxidation and catalase activity in gills; PS-NP elicited greater effects on the phase-II metabolism enzyme glutathione S-transferase and on lysozyme activity, while only PS-MP inhibited the hemocyte phagocytosis, suggesting a major role of PS particle size in modulating immunological/detoxification pathways. A decreased acetylcholinesterase activity was induced by PS-NP, indicating their potential to impair neurological functions in mussels. Biomarker data integration in the Mussel Expert System identified an overall greater health status alteration in mussels exposed to PS-NP compared to PS-MP. This study shows that increasing concentrations of nanoplastics may induce higher effects than microplastics on the mussel’s lysosomal, metabolic, and neurological functions, eventually resulting in a greater impact on their overall fitness.


1995 ◽  
Vol 268 (1) ◽  
pp. H278-H287 ◽  
Author(s):  
S. J. Elliott ◽  
T. N. Doan ◽  
P. N. Henschke

Oxidant stress mediated by tert-butyl hydroperoxide (t-BOOH) inhibits agonist-stimulated Ca2+ entry and internal store Ca2+ release in cultured endothelial cells. The role of intracellular glutathione in modulating the effects of oxidant stress on Ca2+ signaling was determined in cells preincubated with buthionine-[S,R]-sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase, or 1-chloro-2,4-dinitrobenzene (CDNB), a cosubstrate for glutathione-S-transferase. BSO and CDNB decreased endothelial cell glutathione content by 85 and 97%, respectively (control glutathione, 21.5 +/- 2.3 nmol/mg protein). Each agent accelerated the time-dependent effects of t-BOOH on Ca2+ signaling in fura 2-loaded cells and potentiated the inhibition of bradykinin-stimulated 45Ca2+ efflux induced by t-BOOH. These results indicate that decreased availability of reduced glutathione, the primary cosubstrate for glutathione peroxidase, potentiates the effect of hydroperoxide oxidant stress on receptor-operated Ca2+ entry across the plasmalemma and Ca2+ release from internal stores. The present findings suggest that intracellular glutathione availability and/or glutathione redox cycle activity are critically important modulators of oxidant inhibition of Ca(2+)-dependent signal transduction.


Biochimie ◽  
2008 ◽  
Vol 90 (6) ◽  
pp. 968-971 ◽  
Author(s):  
Carmen A. Contreras-Vergara ◽  
Elisa M. Valenzuela-Soto ◽  
Aldo A. Arvizu-Flores ◽  
Rogerio R. Sotelo-Mundo ◽  
Gloria Yepiz-Plascencia

1996 ◽  
Vol 179 (1) ◽  
pp. 274-287 ◽  
Author(s):  
A.C. Puche ◽  
F. Poirier ◽  
M. Hair ◽  
P.F. Bartlett ◽  
B. Key
Keyword(s):  

Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 430 ◽  
Author(s):  
Miroslav Glasa ◽  
Katarína Šoltys ◽  
Lukáš Predajňa ◽  
Nina Sihelská ◽  
Slavomíra Nováková ◽  
...  

In recent years, the accumulated molecular data of Turnip mosaic virus (TuMV) isolates from various hosts originating from different parts of the world considerably helped to understand the genetic complexity and evolutionary history of the virus. In this work, four complete TuMV genomes (HC9, PK1, MS04, MS15) were characterised from naturally infected cultivated and wild-growing Papaver spp., hosts from which only very scarce data were available previously. Phylogenetic analyses showed the affiliation of Slovak Papaver isolates to the world-B and basal-B groups. The PK1 isolate showed a novel intra-lineage recombination pattern, further confirming the important role of recombination in the shaping of TuMV genetic diversity. Biological assays indicated that the intensity of symptoms in experimentally inoculated oilseed poppy are correlated to TuMV accumulation level in leaves. This is the first report of TuMV in poppy plants in Slovakia.


Sign in / Sign up

Export Citation Format

Share Document