phase ii metabolism
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 23)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Abdullah Alkattan ◽  
Ahmed Alkhalifah ◽  
Eman Alsalameen ◽  
Fatimah Alghanim ◽  
Nashwa Radwan

Clopidogrel is an antiplatelet drug commonly used to prevent coagulation. This review aimed to investigate the effect of polymorphisms of G6PD, GCLC, GCLM, GSS, GST, GSR, HK and GLRX genes on clopidogrel during phase II metabolism through exploring previous studies. The results revealed that low glutathione plasma levels caused by several alleles related to these genes could affect the bioactivation process of the clopidogrel prodrug, making it unable to inhibit platelet aggregation perfectly and thus leading to severe consequences in patients with a high risk of blood coagulation. However, the study recommends platelet reactivity tests to predict clopidogrel efficacy rather than studying gene mutations, as most of these mutations are rare and other nongenetic factors could affect the drug’s efficacy.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 836
Author(s):  
Dino Grgic ◽  
Elisabeth Varga ◽  
Barbara Novak ◽  
Anneliese Müller ◽  
Doris Marko

Soybeans are a common ingredient of animal feed. They contain isoflavones, which are known to act as phytoestrogens in animals. Isoflavones were described to have beneficial effects on farm animals. However, there are also reports of negative outcomes after the consumption of isoflavones. This review summarizes the current knowledge of metabolization of isoflavones (including the influence of the microbiome, phase I and phase II metabolism), as well as the distribution of isoflavones and their metabolites in tissues. Furthermore, published studies on effects of isoflavones in livestock species (pigs, poultry, ruminants, fish) are reviewed. Moreover, published studies on occurrence of isoflavones in feed materials and co-occurrence with zearalenone are presented and are supplemented with our own survey data.


2021 ◽  
Vol 22 (16) ◽  
pp. 8973
Author(s):  
Tomasz Tronina ◽  
Monika Mrozowska ◽  
Agnieszka Bartmańska ◽  
Jarosław Popłoński ◽  
Sandra Sordon ◽  
...  

Wogonin is one of the most active flavonoids from Scutellaria baicalensis Georgi (baikal skullcap), widely used in traditional Chinese medicine. It exhibits a broad spectrum of health-promoting and therapeutic activities. Together with baicalein, it is considered to be the one of main active ingredients of Chinese medicines for the management of COVID-19. However, therapeutic use of wogonin may be limited due to low market availability connected with its low content in baikal skullcap and lack of efficient preparative methods for obtaining this compound. Although the amount of wogonin in skullcap root often does not exceed 0.5%, this material is rich in wogonin glucuronide, which may be used as a substrate for wogonin production. In the present study, a rapid, simple, cheap and effective method of wogonin and baicalein preparation, which provides gram quantities of both flavonoids, is proposed. The obtained wogonin was used as a substrate for biotransformation. Thirty-six microorganisms were tested in screening studies. The most efficient were used in enlarged scale transformations to determine metabolism of this xenobiotic. The major phase I metabolism product was 4’-hydroxywogonin—a rare flavonoid which exhibits anticancer activity—whereas phase II metabolism products were glucosides of wogonin. The present studies complement and extend the knowledge on the effect of substitution of A- and B-ring on the regioselective glycosylation of flavonoids catalyzed by microorganisms.


Author(s):  
Yue Sui ◽  
Jianming Wu ◽  
Jianping Chen

Over the past decade, the gut microbiota has received considerable attention for its interactions with the host. Microbial β-glucuronidase generated by this community has hence aroused concern for its biotransformation activity to a wide range of exogenous (foreign) and endogenous compounds. Lately, the role of gut microbial β-glucuronidase in the pathogenesis of breast cancer has been proposed for its estrogen reactivation activity. This is plausible considering that estrogen glucuronides are the primary products of estrogens’ hepatic phase II metabolism and are subject to β-glucuronidase-catalyzed hydrolysis in the gut via bile excretion. However, research in this field is still at its very preliminary stage. This review outlines the biology of microbial β-glucuronidase in the gastrointestinal tract and elaborates on the clues to the existence of microbial β-glucuronidase–estrogen metabolism–breast cancer axis. The research gaps in this field will be discussed and possible strategies to address these challenges are suggested.


Author(s):  
Abdullah Alkattan ◽  
Ahmed alkhalifah ◽  
Eman Alsalameen ◽  
Fatimah Alghanim ◽  
Nashwa Radwan

Clopidogrel is one of the thienopyridine antiplatelet drugs commonly used as a prophylactic medication to prevent coagulation in vessels and cardiovascular events. The molecule of clopidogrel is metabolized in the liver via phase-I and phase-II metabolism pathways. The sulfenic acid clopidogrel metabolite undergoes phase-II metabolism through conjugation with glutathione by the glutathione-s-transferase (GST) to form a glutathione conjugate of clopidogrel (inactive metabolite). A glutaredoxin enzyme removes the glutathione conjugated with clopidogrel to form cis-thiol-clopidogrel. This review focused on the polymorphisms of genes related to phase-II metabolism during the clopidogrel bioactivation process. Overall, no well-controlled studies were done about the relationship between the clopidogrel bioactivation process and genes related to phase-II metabolism’s enzymes. Nevertheless, some polymorphisms of G6PD, GCLC, GCLM, GSS, GST, GSR, HK, and GLRX genes could be responsible for clopidogrel resistance due to low glutathione conjugate or glutaredoxin plasma levels. Studies needed to be concerned with the relationship between clopidogrel resistance and phase-II metabolism issues in the near future.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 649
Author(s):  
Marco Capolupo ◽  
Paola Valbonesi ◽  
Elena Fabbri

The ocean contamination caused by micro- and nano-sized plastics is a matter of increasing concern regarding their potential effects on marine organisms. This study compared the effects of a 21-day exposure to 1.5, 15, and 150 ng/L of polystyrene microplastics (PS-MP, 3-µm) and nanoplastics (PS-NP, 50-nm) on a suite of biomarkers measured in the Mediterranean mussel Mytilus galloprovincialis. Endpoints encompassed immunological/lysosomal responses, oxidative stress/detoxification parameters, and neurotoxicological markers. Compared to PS-MP, PS-NP induced higher effects on lysosomal parameters of general stress. Exposures to both particle sizes increased lipid peroxidation and catalase activity in gills; PS-NP elicited greater effects on the phase-II metabolism enzyme glutathione S-transferase and on lysozyme activity, while only PS-MP inhibited the hemocyte phagocytosis, suggesting a major role of PS particle size in modulating immunological/detoxification pathways. A decreased acetylcholinesterase activity was induced by PS-NP, indicating their potential to impair neurological functions in mussels. Biomarker data integration in the Mussel Expert System identified an overall greater health status alteration in mussels exposed to PS-NP compared to PS-MP. This study shows that increasing concentrations of nanoplastics may induce higher effects than microplastics on the mussel’s lysosomal, metabolic, and neurological functions, eventually resulting in a greater impact on their overall fitness.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 473
Author(s):  
Alessandra Nishioka ◽  
Eric de Castro Tobaruela ◽  
Layanne Nascimento Fraga ◽  
Francisco A. Tomás-Barberán ◽  
Franco Maria Lajolo ◽  
...  

Large interindividual variations in the biological response to citrus flavanones have been observed, and this could be associated with high variations in their bioavailability. The aim of this study was to identify the main determinants underlying interindividual differences in citrus flavanone metabolism and excretion. In a randomized cross-over study, non-obese and obese volunteers, aged 19–40 years, ingested single doses of Pera and Moro orange juices, and urine was collected for 24 h. A large difference in the recovery of the urinary flavanone phase II metabolites was observed, with hesperetin-sulfate and hesperetin-sulfo-O-glucuronide being the major metabolites. Subjects were stratified according to their total excretion of flavanone metabolites as high, medium, and low excretors, but the expected correlation with the microbiome was not observed at the genus level. A second stratification was proposed according to phase II flavanone metabolism, whereby participants were divided into two excretion groups: Profiles A and B. Profile B individuals showed greater biotransformation of hesperetin-sulfate to hesperetin-sulfo-O-glucuronide, as well as transformation of flavanone-monoglucuronide to the respective diglucuronides, suggestive of an influence of polymorphisms on UDP-glucuronosyltransferase. In conclusion, this study proposes a new stratification of volunteers based on their metabolic profiles. Gut microbiota composition and polymorphisms of phase II enzymes may be related to the interindividual variability of metabolism.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3675
Author(s):  
Hui Weng ◽  
Luanying He ◽  
Jiakun Zheng ◽  
Qing Li ◽  
Xiuping Liu ◽  
...  

Free and glycosylated sesquiterpene lactones (SLs), which are abundant in leafy vegetables including Brussels/witloof chicory, possess health-promoting effects in vivo. However, the pharmacokinetics of dietary source of SLs remain largely unknown. In this open-label and single-dose trial, sixteen healthy volunteers consumed 150 g of Brussels/witloof chicory juice containing 48.77 μmol SLs in 5 min. Blood, urine, and fecal samples were collected before and after chicory consumption in 24 h. No SLs were detected in the serum, urine, and fecal samples before chicory consumption in all of the participants. Chicory consumption increased lactucin, 11β,13-dihydrolactucin, and their glucuronide/sulfate conjugates, rather than lactucopicrin and 11β,13-dihydrolactucopicrin, as well as glycosylated SLs in biological samples. The peak concentration of total SLs in serum reached 284.46 nmol/L at 1 h, while, in urine, this peak was 220.3 nmol between 2 and 6 h. The recovery of total SLs in blood, urine, and feces was 7.03%, 1.13%, and 43.76% of the ingested dose, respectively. Human fecal suspensions with intestinal microbiota degraded glycosylated SLs in chicory, and converted lactucopicrin and 11β,13-dihydrolactucopicrin to lactucin and 11β,13-dihydrolactucin, respectively. Collectively, Brussels/witloof chicory SLs are poorly bioavailable and they undergo partial gut microbial and phase II metabolism in humans.


Author(s):  
Aneta Bobowska ◽  
Sebastian Granica ◽  
Agnieszka Filipek ◽  
Matthias F. Melzig ◽  
Thomas Moeslinger ◽  
...  

Abstract Purpose Ellagitannins are high molecular weight polyphenols present in high quantities in various food products. They are metabolized by human and animal gut microbiota to postbiotic metabolites-urolithins, bioavailable molecules of a low molecular weight. Following absorption in the gut, urolithins rapidly undergo phase II metabolism. Thus, to fully evaluate the mechanisms of their biological activity, the in vitro studies should be conducted for their phase II conjugates, mainly glucuronides. The aim of the study was to comparatively determine the influence of urolithin A, iso-urolithin A, and urolithin B together with their respective glucuronides on processes associated with the inflammatory response. Methods The urolithins obtained by chemical synthesis or isolation from microbiota cultures were tested with their respective glucuronides isolated from human urine towards modulation of inflammatory response in THP-1-derived macrophages, RAW 264.7 macrophages, PBMCs-derived macrophages, and primary neutrophils. Results Urolithin A was confirmed to be the most active metabolite in terms of LPS-induced inflammatory response inhibition (TNF-α attenuation, IL-10 induction). The observed strong induction of ERK1/2 phosphorylation has been postulated as the mechanism of its action. None of the tested glucuronide conjugates was active in terms of pro-inflammatory TNF-α inhibition and anti-inflammatory IL-10 and TGF-β1 induction. Conclusion Comparative studies of the most abundant urolithins and their phase II conjugates conducted on human and murine immune cells unambiguously confirmed urolithin A to be the most active metabolite in terms of inhibition of the inflammatory response. Phase II metabolism was shown to result in the loss of urolithins’ pharmacological properties.


Sign in / Sign up

Export Citation Format

Share Document