The effects of temperature on the burial performance and axial motor pattern of the sand-swimming of the Mojave fringe-toed lizard Uma scoparia

2000 ◽  
Vol 203 (7) ◽  
pp. 1241-1252 ◽  
Author(s):  
B.C. Jayne ◽  
M.W. Daggy

Although lateral axial bending is widespread for the locomotion of ectothermic vertebrates, the axial motor patterns of terrestrial taxa are known only for a limited number of species and behaviors. Furthermore, the extent to which the trunk and tail of ectothermic tetrapods have similar motor patterns is poorly documented. We therefore recorded the activity of the epaxial muscles in the trunk and tail of sand-swimming Mojave fringe-toed lizards (Uma scoparia) to determine whether this specialized behavior has features of the motor pattern that differ from those of diverse ectothermic vertebrates. Muscle activity during initial sand-swimming was a standing-wave pattern in the trunk and tail. Next, the hind limbs moved alternately and the caudofemoralis muscles and nearby axial muscle in the trunk and tail had similar long-duration electromyographic bursts, whereas the anterior trunk had shorter, more frequent electromyographic bursts. The final tail burial involved a traveling wave of posteriorly propagated axial muscle activity within localized regions of the tail. With increased temperature (from 22 to 40 degrees C), the mean frequencies of axial oscillations increased from approximately 7 to 21 Hz, and the greatest value (33 Hz) was nearly twice the maximal limb cycling frequency during running. The mean burial time at the lowest temperature (3.8 s) was nearly twice that for a 10 degrees C higher temperature. For the axial electromyograms, a decrease in temperature of 18 degrees C more than doubled the electromyographic and cycle durations, whereas the duty factors and intersegmental phase lags changed only slightly with temperature.

1997 ◽  
Vol 200 (13) ◽  
pp. 1881-1893 ◽  
Author(s):  
M Westneat ◽  
J Walker

Labriform locomotion is a widespread swimming mechanism in fishes during which propulsive forces are generated by oscillating the pectoral fins. We examined the activity of the six major muscles that power the pectoral fin of the bird wrasse Gomphosus varius (Labridae: Perciformes). The muscles studied included the fin abductors (arrector ventralis, abductor superficialis and abductor profundus) and the fin adductors (arrector dorsalis, adductor superficialis and adductor profundus). Our goals were to determine the pattern of muscle activity that drives the fins in abduction and adduction cycles during pectoral fin locomotion, to examine changes in the timing and amplitude of electromyographic (EMG) patterns with increases in swimming speed and to correlate EMG patterns with the kinematics of pectoral fin propulsion. EMG data were recorded from three individuals over a range of swimming speeds from 15 to 70 cm s-1 (1­4.8 TL s-1, where TL is total body length). The basic motor pattern of pectoral propulsion is alternating activity of the antagonist abductor and adductor groups. The downstroke is characterized by activity of the arrector ventralis muscle before the other abductors, whereas the upstroke involves nearly synchronous activity of the three adductors. Most EMG variables (duration, onset time, amplitude and integrated area) showed significant correlations with swimming speeds. However, the timing and duration of muscle activity are relatively constant across speeds when expressed as a fraction of the stride period, which decreases with increased velocity. Synchronous recordings of kinematic data (maximal abduction and adduction) with EMG data revealed that activity in the abductors began after maximal adduction and that activity in the adductors began nearly synchronously with maximal abduction. Thus, the pectoral fin mechanism of G. varius is activated by positive work from both abductor and adductor muscle groups over most of the range of swimming speeds. The adductors produce some negative work only at the highest swimming velocities. We combine information from pectoral fin morphology, swimming kinematics and motor patterns to interpret the musculoskeletal mechanism of pectoral propulsion in labrid fishes.


1989 ◽  
Vol 141 (1) ◽  
pp. 359-375 ◽  
Author(s):  
PETER C. WAINWRIGHT

This study examines patterns of variation in 15 electromyographic (EMG) variables measured from recordings of pharyngeal jaw muscle activity during prey processing in four species of the perciform fish family Haemulidae. Two questions were of primary interest. (1) Are motor patterns conserved across the four species? (2) Do the fishes alter (modulate) muscle activity patterns when feeding on different prey types? The experimental design used allowed the partitioning of variance in EMG variables among species, among individuals within species, among days within individuals, among feedings within days, and among prey types. Only one variable exhibited a significant species effect, indicating that the four species used virtually the same motor pattern during prey processing. In response to three prey types differing in hardness, all four species demonstrated an ability to modulate several EMG variables that characterized the intensity of electrical activity. However, variables characterizing the relative timing of muscle activities were not influenced by prey type. A significant variance component was found among recording days and, together with the possibility of variation among experimental preparations, this raises questions about the extent of previously reported inter-individual variation in EMGs. These results support a growing data base on aquatic feeding in lower vertebrates which finds that: (1) motor patterns tend to be highly conserved among closely related taxa; (2) the ability to modulate motor patterns in response to different prey types appears to be a general property of teleost fish feeding mechanisms; and (3) variation in experimental EMG data is ubiquitous and, when unaccounted for, confounds comparisons among treatment groups.


1993 ◽  
Vol 180 (1) ◽  
pp. 209-227 ◽  
Author(s):  
P. C. Wainwright ◽  
R. G. Turingan

Teleost fishes typically capture prey with the oral jaws and perform most types of prey- processing behavior with the pharyngeal jaw apparatus. In these fishes, the motor patterns associated with the different stages of feeding are quite distinct, and fish can modify muscle activity patterns when feeding on different prey. We examined motor pattern variation in the queen triggerfish, Balistes vetula, a versatile predator that both captures and processes prey with its oral jaws. During feeding on three prey that differed in hardness and elusiveness, three distinct patterns of behavior could be identified on the basis of patterns of muscle activity: prey capture, buccal manipulation and blowing. During prey capture by suction feeding, the retractor arcus palatini muscle (RAP) commenced activity before the levator operculi muscle (LOP). In both buccal manipulation and blowing, the RAP began activity well after the onset of activity in the LOP. Both prey capture and buccal manipulation motor patterns varied when fish fed on different prey. When capturing hard-shelled and non-elusive prey, B. vetula did not employ suction feeding but, instead, the fish directly bit parts of its prey. The motor pattern exhibited during direct biting to capture prey was different from that during suction feeding, but was indistinguishable from the pattern seen during the repeated cycles of buccal manipulation. Harder prey elicited significantly longer bursts of activity in the jaw adductor muscles than did soft prey. In spite of the involvement of the oral jaws in virtually all stages of feeding, B. vetula shows levels of variation between patterns of behavior and types of prey characteristic of previously studied teleost fishes. Thus, the coupling of capture and processing behavior patterns in the repertoire of the oral jaws does not appear to constrain the behavioral versatility of this species.


2000 ◽  
Vol 203 (20) ◽  
pp. 3161-3176 ◽  
Author(s):  
J.R. Grubich

This study explores the evolution of molluscivory in the marine teleost family Sciaenidae by comparing the motor activity patterns of the pharyngeal muscles of two closely related taxa, the molluscivorous black drum (Pogonias cromis) and the generalist red drum (Sciaenops ocellatus). Muscle activity patterns were recorded simultaneously from eight pharyngeal muscles. Electromyographic (EMG) activity was recorded during feeding on three prey types that varied in shell hardness. Canonical variate and discriminant function analyses were used to describe the distinctness of drum pharyngeal processing behaviors. Discriminant functions built of EMG timing variables were more accurate than muscle activity intensity at identifying cycles by prey type and species. Both drum species demonstrated the ability to modulate pharyngeal motor patterns in response to prey hardness. The mean motor patterns and the canonical variate space of crushing behavior indicated that black drum employed a novel motor pattern during molluscivory. The mollusc-crushing motor pattern of black drum is different from other neoteleost pharyngeal behaviors in lacking upper jaw retraction by the retractor dorsalis muscle. This functional modification suggests that crushing hard-shelled marine bivalves requires a ‘vice-like’ compression bite in contrast to the shearing forces that are applied to weaker-shelled fiddler crabs by red drum and to freshwater snails by redear sunfish.


1987 ◽  
Vol 58 (6) ◽  
pp. 1370-1386 ◽  
Author(s):  
R. E. Flamm ◽  
D. Fickbohm ◽  
R. M. Harris-Warrick

1. We analyzed the physiological effects of the adenylate cyclase activator forskolin, and other adenosine 3',5'-cyclic monophosphate (cAMP)-elevating agents, on neurons of the pyloric circuit from the stomatogastric ganglion of the lobster Panulirus interruptus. Agents were bath applied to pyloric neurons either in the synaptically intact pyloric circuit or following isolation from all known synaptic input. 2. Several cAMP-elevating agents, including forskolin, 3-isobutyl-1-methylxanthine, Ro20-1724, and 8-bromo-cAMP, generated similar motor patterns from the pyloric circuit. The motor patterns exhibited an increased cycle frequency and enhanced spike activity from all classes of pyloric neurons. Since these agents differ both in structure and site of action in the cAMP pathway, their physiological effects on the motor pattern probably result from increased cAMP levels in pyloric neurons. 3. When forskolin was applied to synaptically isolated neurons, it caused a strong activation or enhancement of activity of all pyloric cells. However, it induced different types of activity in different cells, including the induction of bursting pacemaker potentials in one cell type, activation of plateau potentials in another, and depolarization with activation or enhancement of tonic spike activity in the remaining cells. Thus there is no single physiological response to cAMP elevation in the pyloric circuit; its effects can be quite diverse, mediating several activity states, in different cells. 4. Radioimmunoassays were performed on whole stomatogastric ganglia to determine whether known neuromodulators can affect cAMP concentrations. Both forskolin and octopamine increased cAMP levels, whereas dopamine, serotonin, proctolin, and FMRFamide did not appreciably affect cAMP levels. The physiological effects of octopamine and forskolin are similar in most, but not all, pyloric cells. Octopamine is thus a candidate neuromodulator whose actions may be mediated, at least in part, by increased cAMP in some pyloric cells; however, forskolin does not completely mimic the physiological effects of octopamine on all pyloric neurons, suggesting that octopamine can also act by other biochemical mechanisms.


1981 ◽  
Vol 46 (02) ◽  
pp. 547-549 ◽  
Author(s):  
E M Essien ◽  
M I Ebhota

SummaryDuring acute malaria infection, platelets in human platelet-rich plasma are hypersensitive to the addition of ADP between 1.0 uM and 5.0 uM, or adrenaline 0.11 uM as aggregating agents. The mean maximum aggregation amplitude (as % of light transmission) obtained from 8 subjects in response to added ADP (1.0 uM), 39.8 ± 27 (1SD), was significantly greater than the value in 6 controls (5.2±6.7 (1SD); t = 3, 51 P <0.005). A similar pattern of response was obtained with higher ADP concentrations (2.4,4.5 or 5.0 uM) in 22 patients and 20 control subjects (89.9±14.9% vs 77.8±16.5% (1SD) t = 2.45, P <0.02). Addition of 4.5 uM ADP to patient PRP usually evoked only a single aggregation wave (fused primary and secondary waves) while the typical primary and secondary wave pattern was usually obtained from controls.Mean plasma B-thromboglobulin (BTG) concentration in 7 patients (208.3 ± 15.6 ng/ml) was significantly higher than the value in 6 control subjects (59.2±15.7 ng/ml; t = 13.44, P <0.002).


1982 ◽  
Vol 48 (4) ◽  
pp. 914-937 ◽  
Author(s):  
D. F. Russell ◽  
D. K. Hartline

1. Neurons in the central pattern generator for the "pyloric" motor rhythm of the lobster stomatogastric ganglion were investigated for the possible involvement of regenerative membrane properties in their membrane-potential oscillations and bursting output patterns. 2. Evidence was found that each class of pyloric-system neurons can possess a capability for generating prolonged regenerative depolarizations by a voltage-dependent membrane mechanism. Such responses have been termed plateau potentials. 3. Several tests were applied to determine whether a given cell possessed a plateau capability. First among these was the ability to trigger all-or-none bursts of nerve impulses by brief depolarizing current pulses and to terminate bursts in an all-or-none fashion with brief hyperpolarizing current pulses. Tests were made under conditions of a high level of activity in the pyloric generator, often in conjunction with the use of hyperpolarizing offsets to the cell under test to suppress ongoing bursting. 4. For each class, the network of synaptic interconnections among the pyloric-system neurons was shown to not be the cause of the regenerative responses observed. 5. Plateau potentials are viewed as a driving force for axon spiking during bursts and as interacting with the synaptic network in the formation of the pyloric motor pattern.


2003 ◽  
Vol 83 (10) ◽  
pp. 899-906 ◽  
Author(s):  
Deborah Falla ◽  
Gwendolen Jull ◽  
Paul Dall'Alba ◽  
Alberto Rainoldi ◽  
Roberto Merletti

Abstract Background and Purpose. This study evaluated an electromyographic technique for the measurement of muscle activity of the deep cervical flexor (DCF) muscles. Electromyographic signals were detected from the DCF, sternocleidomastoid (SCM), and anterior scalene (AS) muscles during performance of the craniocervical flexion (CCF) test, which involves performing 5 stages of increasing craniocervical flexion range of motion—the anatomical action of the DCF muscles. Subjects. Ten volunteers without known pathology or impairment participated in this study. Methods. Root-mean-square (RMS) values were calculated for the DCF, SCM, and AS muscles during performance of the CCF test. Myoelectric signals were recorded from the DCF muscles using bipolar electrodes placed over the posterior oropharyngeal wall. Reliability estimates of normalized RMS values were obtained by evaluating intraclass correlation coefficients and the normalized standard error of the mean (SEM). Results. A linear relationship was evident between the amplitude of DCF muscle activity and the incremental stages of the CCF test (F=239.04, df=36, P&lt;.0001). Normalized SEMs in the range 6.7% to 10.3% were obtained for the normalized RMS values for the DCF muscles, providing evidence of reliability for these variables. Discussion and Conclusion. This approach for obtaining a direct measure of the DCF muscles, which differs from those previously used, may be useful for the examination of these muscles in future electromyographic applications.


Biomechanics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 202-213
Author(s):  
Harish Chander ◽  
Sachini N. K. Kodithuwakku Arachchige ◽  
Alana J. Turner ◽  
Reuben F. Burch V ◽  
Adam C. Knight ◽  
...  

Background: Occupational footwear and a prolonged duration of walking have been previously reported to play a role in maintaining postural stability. The purpose of this paper was to analyze the impact of three types of occupational footwear: the steel-toed work boot (ST), the tactical work boot (TB), and the low-top work shoe (LT) on previously unreported lower extremity muscle activity during postural stability tasks. Methods: Electromyography (EMG) muscle activity was measured from four lower extremity muscles (vastus medialis (VM), medial hamstrings (MH), tibialis anterior (TA), and medial gastrocnemius (MG) during maximal voluntary isometric contractions (MVIC) and during a sensory organization test (SOT) every 30 min over a 4 h simulated workload while wearing ST, TB, and LT footwear. The mean MVIC and the mean and percentage MVIC during each SOT condition from each muscle was analyzed individually using a repeated measures ANOVA at an alpha level of 0.05. Results: Significant differences (p < 0.05) were found for maximal exertions, but this was limited to only the time main effect. No significant differences existed for EMG measures during the SOT. Conclusion: The findings suggest that occupational footwear type does not influence lower extremity muscle activity during both MVIC and SOT. Significantly lower muscle activity during maximal exertions over the course of the 4 h workload was evident, which can be attributed to localized muscular fatigue, but this was not sufficient to impact muscle activity during postural stability tasks.


1996 ◽  
Vol 76 (3) ◽  
pp. 687-717 ◽  
Author(s):  
E. Marder ◽  
R. L. Calabrese

Rhythmic movements are produced by central pattern-generating networks whose output is shaped by sensory and neuromodulatory inputs to allow the animal to adapt its movements to changing needs. This review discusses cellular, circuit, and computational analyses of the mechanisms underlying the generation of rhythmic movements in both invertebrate and vertebrate nervous systems. Attention is paid to exploring the mechanisms by which synaptic and cellular processes interact to play specific roles in shaping motor patterns and, consequently, movement.


Sign in / Sign up

Export Citation Format

Share Document