scholarly journals Continuous body 3-D reconstruction of limbless animals

2021 ◽  
Vol 224 (6) ◽  
pp. jeb220731
Author(s):  
Qiyuan Fu ◽  
Thomas W. Mitchel ◽  
Jin Seob Kim ◽  
Gregory S. Chirikjian ◽  
Chen Li

ABSTRACTLimbless animals such as snakes, limbless lizards, worms, eels and lampreys move their slender, long bodies in three dimensions to traverse diverse environments. Accurately quantifying their continuous body's 3-D shape and motion is important for understanding body–environment interactions in complex terrain, but this is difficult to achieve (especially for local orientation and rotation). Here, we describe an interpolation method to quantify continuous body 3-D position and orientation. We simplify the body as an elastic rod and apply a backbone optimization method to interpolate continuous body shape between end constraints imposed by tracked markers. Despite over-simplifying the biomechanics, our method achieves a higher interpolation accuracy (∼50% error) in both 3-D position and orientation compared with the widely used cubic B-spline interpolation method. Beyond snakes traversing large obstacles as demonstrated, our method applies to other long, slender, limbless animals and continuum robots. We provide codes and demo files for easy application of our method.

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Tongtong Liu ◽  
Lingli Cui ◽  
Chao Zhang

The turn domain resampling (TDR) method is proposed in the paper on the basis of the existing angle domain resampling for solving the problem of non-fixed fault frequency under variable working conditions. TDR can select the appropriate sampling order according to the influence of frequency conversion, which avoided the error caused by the spline interpolation method. It can provide accurate parameters for the subsequent calculation of the equivalent frequency order. Variable multi-scale morphological filtering (VMSMF) method is proposed for the purpose of further reducing the interference of noise in resampling signal to feature extraction. VMSMF adaptively selects structural elements according to the parameter change of impact signal to make its scale more targeted. It only needs to calculate once using the optimal structural unit for a particular impact, and the filtering accuracy and operating efficiency have been greatly improved. The main steps of this article are as follows. First, the TDR is used to resample the original signal as to get the resampling signal which is still submerged by the strong noise. In the second step, VMSMF is used to filter the resampling signal to obtain the signal with less noise interference. Finally, the fault characteristics of the filtering signal was extracted and compared with the possible fault frequency calculated by the sampling parameters provided by resampling, so as to determine the fault type of the planetary gearbox. By analyzing the simulation signal and the experimental signal respectively, this method can find out the corresponding fault characteristics effectively.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Fenling Feng ◽  
Dan Lan ◽  
Liuwen Yang

A synergy evolutionary model of the collecting, distributing, and transporting system of railway heavy haul transportation is built by introducing synergy-related concepts and applying synergy evolutionary theory. Then spline interpolation method, numerical differential five-point formula, and method of least squares are used to solve synergistic coefficient, while fourth-order Rugge-kutta method and fourth-order Adams linear implicit formula method are used to solve coevolutionary curve of the system. Finally, the heavy load transportation of Daqin Railway is an example of the empirical analysis. The research result shows that the degree of order of the system and its three subsystems—collecting, transporting, and distributing—increases as the synergetic coefficient of the subsystems increases; otherwise, the degree of the order will decrease. It also shows that this model can better analyze the coevolutionary process of the heavy load collecting, distributing, and transporting system of Daqin Railway, with its rationality and applicability verified.


2013 ◽  
Vol 318 ◽  
pp. 100-107
Author(s):  
Zhen Shen ◽  
Biao Wang ◽  
Hui Yang ◽  
Yun Zheng

Six kinds of interpolation methods, including projection-shape function method, three-dimensional linear interpolation method, optimal interpolation method, constant volume transformation method and so on, were adoped in the study of interpolation accuracy. From the point of view about the characterization of matching condition of two different grids and interpolation function, the infuencing factor on the interpolation accuracy was studied. The results revealed that different interpolation methods had different interpolation accuracy. The projection-shape function interpolation method had the best effect and the more complex interpolation function had lower accuracy. In many cases, the matching condition of two grids had much greater impact on the interpolation accuracy than the method itself. The error of interpolation method is inevitable, but the error caused by the grid quality could be reduced through efforts.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Feng-Gong Lang ◽  
Xiao-Ping Xu

We mainly present the error analysis for two new cubic spline based methods; one is a lacunary interpolation method and the other is a very simple quasi interpolation method. The new methods are able to reconstruct a function and its first two derivatives from noisy function data. The explicit error bounds for the methods are given and proved. Numerical tests and comparisons are performed. Numerical results verify the efficiency of our methods.


1993 ◽  
Vol 182 (1) ◽  
pp. 57-69 ◽  
Author(s):  
M. Wortmann ◽  
W. Zarnack

1. We simultaneously recorded lift/body weight, flight speed, body angle and 12 variables of wing movement for locusts performing tethered long-term flight with low movement scatter. The movements of the forewings and hindwings were recorded in three dimensions by means of miniature induction coils. 2. By adjusting the body angle, we could reproducibly manipulate lift generation as a consequence of induced changes in the wings' movement patterns. We were therefore able to analyse various relationships between the movement patterns and lift. 3. The most prominent variations of kinematic variables were observed for the forewing movements. The relative lift and the steady angle of pitch were positively correlated but there was a negative correlation between relative lift and pitching amplitude. We found no correlation between relative lift and flapping amplitude. Our results seem to correspond to a new theory about unsteady aerodynamics of oscillating aerofoils. 4. We sometimes observed variations in lagging. 5. The forewing downstroke was delayed by 0–8 ms following the hindwing downstroke. Relative lift was positively correlated to this delay.


2021 ◽  
Author(s):  
Sebastian F. Riebl ◽  
Christian Wakelam ◽  
Reinhard Niehuis

Abstract Turbine Vane Frames (TVF) are a way to realize more compact jet engine designs. Located between the high pressure turbine (HPT) and the low pressure turbine (LPT), they fulfill structural and aerodynamic tasks. When used as an integrated concept with splitters located between the structural load-bearing vanes, the TVF configuration contains more than one type of airfoil with sometimes pronouncedly different properties. This system of multidisciplinary demands and mixed blading poses an interesting opportunity for optimization. Within the scope of the present work, a full geometric parameterization of a TVF with splitters is presented. The parameterization is chosen as to minimize the number of parameters required to automatically and flexibly represent all blade types involved in a TVF row in all three dimensions. Typical blade design parameters are linked to the fourth order Bézier-curve controlled camber line-thickness parameterization. Based on conventional design rules, a procedure is presented, which sets the parameters within their permissible ranges according to the imposed constraints, using a proprietary developed code. The presented workflow relies on subsequent three dimensional geometry generation by transfer of the proposed parameter set to a commercially available CAD package. The interdependencies of parameters are discussed and their respective significance for the adjustment process is detailed. Furthermore, the capability of the chosen parameterization and adjustment process to rebuild an exemplary reference TVF geometry is demonstrated. The results are verified by comparing not only geometrical profile data, but also validated CFD simulation results between the rebuilt and original geometries. Measures taken to ensure the robustness of the method are highlighted and evaluated by exploring extremes in the permissible design space. Finally, the embedding of the proposed method within the framework of an automated, gradient free numerical optimization is discussed. Herein, implications of the proposed method on response surface modeling in combination with the optimization method are highlighted. The method promises to be an option for improvement of optimization efficiency in gradient free optimization of interdependent blade geometries, by a-priori excluding unsuitable blade combinations, yet keeping restrictions to the design space as limited as possible.


2015 ◽  
Vol 713-715 ◽  
pp. 800-804 ◽  
Author(s):  
Gang Chen ◽  
Cong Wei ◽  
Qing Xuan Jia ◽  
Han Xu Sun ◽  
Bo Yang Yu

In this paper, a kind of multi-objective trajectory optimization method based on non-dominated sorting genetic algorithm II (NSGA-II) is proposed for free-floating space manipulator. The aim is to optimize the motion path of the space manipulator with joint angle constraints and joint velocity constraints. Firstly, the kinematics and dynamics model are built. Secondly, the 3-5-3 piecewise polynomial is selected as interpolation method for trajectory planning of joint space. Thirdly, three objective functions are established to simultaneously minimize execution time, energy consumption and jerk of the joints. At last, the objective functions are combined with the NSGA-II algorithm to get the Pareto optimal solution set. The effectiveness of the mentioned method is verified by simulations.


2012 ◽  
Vol 588-589 ◽  
pp. 1312-1315
Author(s):  
Yi Kun Zhang ◽  
Ming Hui Zhang ◽  
Xin Hong Hei ◽  
Deng Xin Hua ◽  
Hao Chen

Aiming at building a Lidar data interpolation model, this paper designs and implements a GA-BP interpolation method. The proposed method uses genetic method to optimize BP neural network, which greatly improves the calculation accuracy and convergence rate of BP neural network. Experimental results show that the proposed method has a higher interpolation accuracy compared with BP neural network as well as linear interpolation method.


Sign in / Sign up

Export Citation Format

Share Document