scholarly journals Thresholds of polarization vision in octopuses

2021 ◽  
Vol 224 (7) ◽  
Author(s):  
Shelby E. Temple ◽  
Martin J. How ◽  
Samuel B. Powell ◽  
Viktor Gruev ◽  
N. Justin Marshall ◽  
...  

ABSTRACTPolarization vision is widespread in nature, mainly among invertebrates, and is used for a range of tasks including navigation, habitat localization and communication. In marine environments, some species such as those from the Crustacea and Cephalopoda that are principally monochromatic, have evolved to use this adaptation to discriminate objects across the whole visual field, an ability similar to our own use of colour vision. The performance of these polarization vision systems varies, and the few cephalopod species tested so far have notably acute thresholds of discrimination. However, most studies to date have used artificial sources of polarized light that produce levels of polarization much higher than found in nature. In this study, the ability of octopuses to detect polarization contrasts varying in angle of polarization (AoP) was investigated over a range of different degrees of linear polarization (DoLP) to better judge their visual ability in more ecologically relevant conditions. The ‘just-noticeable-differences’ (JND) of AoP contrasts varied consistently with DoLP. These JND thresholds could be largely explained by their ‘polarization distance’, a neurophysical model that effectively calculates the level of activity in opposing horizontally and vertically oriented polarization channels in the cephalopod visual system. Imaging polarimetry from the animals’ natural environment was then used to illustrate the functional advantage that these polarization thresholds may confer in behaviourally relevant contexts.

2020 ◽  
Vol 223 (22) ◽  
pp. jeb219832
Author(s):  
Tsyr-Huei Chiou ◽  
Ching-Wen Wang

ABSTRACTStomatopods, or mantis shrimp, are the only animal group known to possess circular polarization vision along with linear polarization vision. By using the rhabdomere of a distally located photoreceptor as a wave retarder, the eyes of mantis shrimp are able to convert circularly polarized light into linearly polarized light. As a result, their circular polarization vision is based on the linearly polarized light-sensitive photoreceptors commonly found in many arthropods. To investigate how linearly and circularly polarized light signals might be processed, we presented a dynamic polarized light stimulus while recording from photoreceptors or lamina neurons in intact mantis shrimp Haptosquilla pulchella. The results indicate that all the circularly polarized light-sensitive photoreceptors also showed differential responses to the changing e-vector angle of linearly polarized light. When stimulated with linearly polarized light of varying e-vector angle, most photoreceptors produced a concordant sinusoidal response. In contrast, some lamina neurons doubled the response frequency in reacting to linearly polarized light. These responses resembled a rectified sum of two-channel linear polarization-sensitive photoreceptors, indicating that polarization visual signals are processed at or before the first optic lobe. Noticeably, within the lamina, there was one type of neuron that showed a steady depolarization response to all stimuli except right-handed circularly polarized light. Together, our findings suggest that, between the photoreceptors and lamina neurons, linearly and circularly polarized light may be processed in parallel and differently from one another.


2000 ◽  
Vol 355 (1401) ◽  
pp. 1187-1190 ◽  
Author(s):  
Craig W. Hawryshyn

Polarization vision in vertebrates has been marked with significant controversy over recent decades. In the last decade, however, models from two laboratories have indicated that the spatial arrangement of photoreceptors provides the basis for polarization sensitivity.Work in my laboratory, in collaboration with I. Novales Flamarique and F. I. Harosi, has shown that polarization sensitivity depends on a well–defined square cone mosaic pattern and that the biophysical properties of the square cone mosaic probably account for polarization vision in the ultraviolet spectrum. The biophysical mechanism appears to be based on the selective reflection of axial–polarized light by the partitioning membrane, formed along the contact zone between the members of the double cones, onto neighbouring ultraviolet–sensitive cones. In this short review, I discuss the historical development of this research problem.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gary P. Misson ◽  
Shelby E. Temple ◽  
Stephen J. Anderson

AbstractUnder specific conditions of illumination and polarization, differential absorption of light by macular pigments is perceived as the entoptic phenomena of Maxwell’s spot (MS) or Haidinger’s brushes (HB). To simulate MS and HB, an existing computational model of polarization-dependent properties of the human macula was extended by incorporating neuronal adaptation to stabilized retinal images. The model predicted that polarized light modifies the appearance of MS leading to the perception of a novel phenomenon. The model also predicted a correlation between the observed diameters of MS and HB. Predictions were tested psychophysically in human observers, whose measured differences in the diameters of each entoptic phenomenon generated with depolarized and linearly polarized light were consistent with the model simulations. These findings support a common origin of each phenomenon, and are relevant to the clinical use of polarization stimuli in detecting and monitoring human eye disorders, including macular degeneration. We conclude: (i) MS and HB both result from differential light absorption through a radial diattenuator, compatible with the arrangement of macular pigments in Henle fibres; (ii) the morphology of MS is dependent on the degree of linear polarization; (iii) perceptual differences between MS and HB result from different states of neural adaptation.


1973 ◽  
Vol 52 ◽  
pp. 161-167 ◽  
Author(s):  
P. G. Martin

This paper shows that optical observations of circular polarization produced by aligned interstellar grains could yield valuable information about the grain material. The interstellar medium is known to be linearly dichroic from observations of interstellar linear polarization; many different grain models using a large variety of compositions can be found to reproduce these observations. Since the same aligned grains make the medium linearly birefringent, a small component of circular polarization can result from incident linearly polarized light if the position angle of the linear polarization does not coincide with either principal axis of the medium. Here calculations are presented to demonstrate that the wavelength of the circular polarization is sensitive to the imaginary part of the complex refractive index of the grain material. This provides an opportunity of investigating whether the grains are characteristically dielectric or metallic. Some possible observations are suggested.


2021 ◽  
Author(s):  
Yongrong Qiu ◽  
Zhijian Zhao ◽  
David Klindt ◽  
Magdalena Kautzky ◽  
Klaudia P. Szatko ◽  
...  

1999 ◽  
Vol 11 (1) ◽  
pp. 52-66 ◽  
Author(s):  
Heinz Schärli ◽  
Alison M. Harman ◽  
John H. Hogben

Brain damage in the visual system can lead to apparently blind visual areas. However, more elaborate testing indicates that some visual ability may still exist for specific stimuli in the otherwise blind regions. This phenomenon is called “blindsight” if subjects report no conscious awareness of visual stimuli but when forced to guess, nevertheless perform better than chance. It has mainly been suggested that secondary visual pathways are responsible for this phenomenon. However, no published study has clearly shown the neural mechanism responsible for blindsight. Furthermore, experimental artifacts may have been responsible for the appearance of the phenomenon in some subjects. In the present study, the visual fields of nine subjects were mapped and residual visual performance was examined in many areas using three different experimental procedures. Artifacts such as stray light or eye movements were well controlled. In addition, confidence ratings were required after each trial in the forced-choice tests. The results show that only one subject with a lesion in the optic radiation had blindsight in two discrete areas of the affected visual field. Spared optic radiation fibers of the main (primary) geniculo-striate visual pathway were most likely to account for this finding.


Author(s):  
Ramón Hegedüs ◽  
Susanne Åkesson ◽  
Rüdiger Wehner ◽  
Gábor Horváth

In sunshine, the Vikings navigated on the open sea using sundials. According to a widespread hypothesis, when the Sun was occluded by fog or clouds the Vikings might have navigated by skylight polarization detected with an enigmatic birefringent crystal (sunstone). There are two atmospheric optical prerequisites for this alleged polarimetric Viking navigation under foggy/cloudy skies: (1) the degree of linear polarization p of skylight should be high enough and (2) at a given Sun position, the pattern of the angle of polarization α of the foggy/cloudy sky should be similar to that of the clear sky. Until now, these prerequisites have not been investigated. Using full-sky imaging polarimetry, we measured the p - and α -patterns of Arctic foggy and cloudy skies when the Sun was invisible. These patterns were compared with the polarization patterns of clear Arctic skies. We show here that although prerequisite (2) is always fulfilled under both foggy and cloudy conditions, if the fog layer is illuminated by direct sunlight, prerequisite (1) is usually satisfied only for cloudy skies. In sunlit fog, the Vikings could have navigated by polarization only, if p of light from the foggy sky was sufficiently high.


2014 ◽  
Vol 369 (1636) ◽  
pp. 20130032 ◽  
Author(s):  
Thomas W. Cronin ◽  
Michael J. Bok ◽  
N. Justin Marshall ◽  
Roy L. Caldwell

Stomatopod crustaceans have the most complex and diverse assortment of retinal photoreceptors of any animals, with 16 functional classes. The receptor classes are subdivided into sets responsible for ultraviolet vision, spatial vision, colour vision and polarization vision. Many of these receptor classes are spectrally tuned by filtering pigments located in photoreceptors or overlying optical elements. At visible wavelengths, carotenoproteins or similar substances are packed into vesicles used either as serial, intrarhabdomal filters or lateral filters. A single retina may contain a diversity of these filtering pigments paired with specific photoreceptors, and the pigments used vary between and within species both taxonomically and ecologically. Ultraviolet-filtering pigments in the crystalline cones serve to tune ultraviolet vision in these animals as well, and some ultraviolet receptors themselves act as birefringent filters to enable circular polarization vision. Stomatopods have reached an evolutionary extreme in their use of filter mechanisms to tune photoreception to habitat and behaviour, allowing them to extend the spectral range of their vision both deeper into the ultraviolet and further into the red.


1996 ◽  
Vol 199 (9) ◽  
pp. 2077-2084
Author(s):  
N Shashar ◽  
P Rutledge ◽  
T Cronin

Polarization sensitivity is well documented in marine animals, but its function is not yet well understood. Of the cephalopods, squid and octopus are known to be sensitive to the orientation of polarization of incoming light. This sensitivity arises from the orthogonal orientation of neighboring photoreceptors. Electron microscopical examination of the retina of the cuttlefish Sepia officinalis L. revealed the same orthogonal structure, suggesting that cuttlefish are also sensitive to linearly polarized light. Viewing cuttlefish through an imaging polarized light analyzer revealed a prominent polarization pattern on the arms, around the eyes and on the forehead of the animals. The polarization pattern disappeared when individuals lay camouflaged on the bottom and also during extreme aggression display, attacks on prey, copulation and egg-laying behavior in females. In behavioral experiments, the responses of cuttlefish to their images reflected from a mirror changed when the polarization patterns of the reflected images were distorted. These results suggest that cuttlefish use polarization vision and display for intraspecific recognition and communication.


Sign in / Sign up

Export Citation Format

Share Document