scholarly journals Is maternal thyroid hormone deposition subject to a trade-off between self and egg because of iodine? An experimental study in rock pigeon

Author(s):  
Tom Sarraude ◽  
Bin-Yan Hsu ◽  
Suvi Ruuskanen ◽  
Ton Groothuis

Maternal hormones constitute a key signalling pathway for mothers to shape offspring phenotype and fitness. Thyroid hormones (THs; triiodothyronine, T3 and thyroxine, T4) are metabolic hormones known to play crucial roles in embryonic development and survival in all vertebrates. During early developmental stages, embryos exclusively rely on the exposure to maternal THs, and maternal hypothyroidism can cause severe embryonic maldevelopment. The TH molecule includes iodine, an element that cannot be synthesised by the organism. Therefore, TH production may become costly when environmental iodine availability is low. This may yield a trade-off for breeding females between allocating the hormones to self or to their eggs, potentially to the extent that it even influences the number of laid eggs. In this study, we investigated whether low dietary iodine may limit TH production and transfer to the eggs in a captive population of Rock pigeons (Columba livia). We provided breeding females with an iodine-restricted (I- diet) or iodine-supplemented diet (I+ diet) and measured the resulting circulating and yolk iodine and TH concentrations and the number of eggs laid. Our iodine-restricted diet successfully decreased both circulating and yolk iodine concentrations compared to the supplemented diet, but not circulating or yolk THs. This indicates that mothers may not be able to independently regulate hormone exposure for self and their embryos. However, egg production was clearly reduced in the I- group, with fewer females laying eggs. This result shows that restricted availability of iodine does induce a cost in terms of egg production. Whether females reduced egg production to preserve THs for themselves or to prevent embryos from exposure to low iodine and/or THs is as yet unclear.

2021 ◽  
Author(s):  
Tom Sarraude ◽  
Bin-Yan Hsu ◽  
Suvi Ruuskanen ◽  
Ton Groothuis

Maternal hormones constitute a key signalling pathway for mothers to shape offspring phenotype and fitness. Thyroid hormones (THs; triiodothyronine, T3 and thyroxine, T4) are metabolic hormones known to play crucial roles in embryonic development and survival in all vertebrates. During early developmental stages, embryos exclusively rely on the exposure to maternal THs, and maternal hypothyroidism can cause severe embryonic maldevelopment. The TH molecule includes iodine, an element that cannot be synthesised by the organism. Therefore, TH production may become costly when environmental iodine availability is low. This may yield a trade-off for breeding females between allocating the hormones to self or to their eggs, potentially to the extent that it even influences the number of laid eggs. In this study, we investigated whether low dietary iodine may limit TH production and transfer to the eggs in a captive population of Rock pigeons (Columba livia). We provided breeding females with an iodine-restricted (I- diet) or iodine-supplemented diet (I+ diet) and measured the resulting circulating and yolk iodine and TH concentrations and the number of eggs laid. Our iodine-restricted diet successfully decreased both circulating and yolk iodine concentrations compared to the supplemented diet, but not circulating or yolk THs. This indicates that mothers may not be able to independently regulate hormone exposure for self and their embryos. However, egg production was clearly reduced in the I- group, with fewer females laying eggs. This result shows that restricted availability of iodine does induce a cost in terms of egg production. Whether females reduced egg production to preserve THs for themselves or to prevent embryos from exposure to low iodine and/or THs is as yet unclear.


2005 ◽  
Vol 62 (8) ◽  
pp. 1683-1690 ◽  
Author(s):  
Nikoletta Karaiskou ◽  
Alexander Triantafyllidis ◽  
Maritsa Margaroni ◽  
Dimitris Karatzas ◽  
Costas Triantaphyllidis

AbstractDNA-based methodologies are increasingly used successfully to elucidate cases of misidentification of adult individuals of fish species with morphological similarities. However, the problem of misidentification can arise even earlier than adulthood, between congeneric and even distantly related species with similar morphology in the early developmental stages. Therefore, a double DNA approach was developed for Macrorhamphosus scolopax, to identify and discriminate it from European species of the genus Trachurus. These species overlap geographically and temporally and are characterized by morphologically similar eggs. The approach looks at both mitochondrial and nuclear loci. Polymerase Chain Reaction (PCR) amplification of the 16S rRNA mtDNA gene was followed by restriction analysis with two species-specific enzymes: EcoRV and PmlI. Digestion with these endonucleases yielded species-specific electrophoretic profiles. Additionally, the nuclear multi-copy 5S rRNA gene was selected as an alternative candidate for identifying M. scolopax. The universality of the results was verified by screening a large number of fish from five geographical regions, covering most of the overlapping distribution of the species. The output is a double DNA methodology that can be used for egg identification and which could be of value in the egg production method of biomass assessment.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


2017 ◽  
Vol 186 (1) ◽  
pp. 103-112
Author(s):  
Lukáš Laibl ◽  
Oldřich Fatka

This contribution briefly summarizes the history of research, modes of preservation and stratigraphic distribution of 51 trilobite and five agnostid taxa from the Barrandian area, for which the early developmental stages have been described.


2021 ◽  
Vol 22 (3) ◽  
pp. 1210
Author(s):  
Krzysztof Formicki ◽  
Agata Korzelecka-Orkisz ◽  
Adam Tański

The number of sources of anthropogenic magnetic and electromagnetic fields generated by various underwater facilities, industrial equipment, and transferring devices in aquatic environment is increasing. These have an effect on an array of fish life processes, but especially the early developmental stages. The magnitude of these effects depends on field strength and time of exposure and is species-specific. We review studies on the effect of magnetic fields on the course of embryogenesis, with special reference to survival, the size of the embryos, embryonic motor function, changes in pigment cells, respiration hatching, and directional reactions. We also describe the effect of magnetic fields on sperm motility and egg activation. Magnetic fields can exert positive effects, as in the case of the considerable extension of sperm capability of activation, or have a negative influence in the form of a disturbance in heart rate or developmental instability in inner ear organs.


2021 ◽  
Vol 22 (4) ◽  
pp. 1854
Author(s):  
Tabinda Sidrat ◽  
Zia-Ur Rehman ◽  
Myeong-Don Joo ◽  
Kyeong-Lim Lee ◽  
Il-Keun Kong

The Wnt/β-catenin signaling pathway plays a crucial role in early embryonic development. Wnt/β-catenin signaling is a major regulator of cell proliferation and keeps embryonic stem cells (ESCs) in the pluripotent state. Dysregulation of Wnt signaling in the early developmental stages causes several hereditary diseases that lead to embryonic abnormalities. Several other signaling molecules are directly or indirectly activated in response to Wnt/β-catenin stimulation. The crosstalk of these signaling factors either synergizes or opposes the transcriptional activation of β-catenin/Tcf4-mediated target gene expression. Recently, the crosstalk between the peroxisome proliferator-activated receptor delta (PPARδ), which belongs to the steroid superfamily, and Wnt/β-catenin signaling has been reported to take place during several aspects of embryonic development. However, numerous questions need to be answered regarding the function and regulation of PPARδ in coordination with the Wnt/β-catenin pathway. Here, we have summarized the functional activation of the PPARδ in co-ordination with the Wnt/β-catenin pathway during the regulation of several aspects of embryonic development, stem cell regulation and maintenance, as well as during the progression of several metabolic disorders.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 638
Author(s):  
Monika Mazur ◽  
Daria Wojciechowska ◽  
Ewa Sitkiewicz ◽  
Agata Malinowska ◽  
Bianka Świderska ◽  
...  

The slime mold Dictyostelium discoideum’s life cycle includes different unicellular and multicellular stages that provide a convenient model for research concerning intracellular and intercellular mechanisms influencing mitochondria’s structure and function. We aim to determine the differences between the mitochondria isolated from the slime mold regarding its early developmental stages induced by starvation, namely the unicellular (U), aggregation (A) and streams (S) stages, at the bioenergetic and proteome levels. We measured the oxygen consumption of intact cells using the Clarke electrode and observed a distinct decrease in mitochondrial coupling capacity for stage S cells and a decrease in mitochondrial coupling efficiency for stage A and S cells. We also found changes in spare respiratory capacity. We performed a wide comparative proteomic study. During the transition from the unicellular stage to the multicellular stage, important proteomic differences occurred in stages A and S relating to the proteins of the main mitochondrial functional groups, showing characteristic tendencies that could be associated with their ongoing adaptation to starvation following cell reprogramming during the switch to gluconeogenesis. We suggest that the main mitochondrial processes are downregulated during the early developmental stages, although this needs to be verified by extending analogous studies to the next slime mold life cycle stages.


Sign in / Sign up

Export Citation Format

Share Document