Anumerical algorithm for the solution of two-dimensional rough contact problems

2005 ◽  
Vol 40 (5) ◽  
pp. 463-476 ◽  
Author(s):  
M Ciavarella ◽  
G Demelio ◽  
C Murolo

In this paper, a numerical algorithm is developed to solve the elastic contact problem accurately for two-dimensional rough surfaces. A first version of the method gives a full numerical solution for the discrete problem with all the details of the profile included, and the second version simulates approximately the roughness on a smaller scale with the presence of a non-linear elastic layer (as in the classical Winkler foundation model). In the literature, usually the solution of line contact is given by assuming displacements relative to a datum point, to overcome the difficulty that in two dimensions the displacements are undefined to an arbitrary constant. In the present work, the compliance matrix of the elastic half-plane is calculated starting from a self-equilibrated load distribution with periodic boundary conditions. Some examples are shown to validate the methods. Finally, the method is applied to discuss previous results by the present authors on rough contact problems defined by Weierstrass series profiles, and a discussion follows. In particular, it is found that the Winkler non-linear layer model is surprisingly useful for evaluating the electrical conductance, since (at least in the limited case of two superposed sinusoids) it does not require the wavelength and amplitude of the microscopic component of roughness to be much smaller than the macroscopic component. Some aspects of the mutual role of various components of roughness in the compliance and conductance are elucidated by means of example cases.

2021 ◽  
Vol 118 (14) ◽  
pp. e2025870118
Author(s):  
Pablo Ares ◽  
Yi Bo Wang ◽  
Colin R. Woods ◽  
James Dougherty ◽  
Laura Fumagalli ◽  
...  

Nonlinear mechanics of solids is an exciting field that encompasses both beautiful mathematics, such as the emergence of instabilities and the formation of complex patterns, as well as multiple applications. Two-dimensional crystals and van der Waals (vdW) heterostructures allow revisiting this field on the atomic level, allowing much finer control over the parameters and offering atomistic interpretation of experimental observations. In this work, we consider the formation of instabilities consisting of radially oriented wrinkles around mono- and few-layer “bubbles” in two-dimensional vdW heterostructures. Interestingly, the shape and wavelength of the wrinkles depend not only on the thickness of the two-dimensional crystal forming the bubble, but also on the atomistic structure of the interface between the bubble and the substrate, which can be controlled by their relative orientation. We argue that the periodic nature of these patterns emanates from an energetic balance between the resistance of the top membrane to bending, which favors large wavelength of wrinkles, and the membrane-substrate vdW attraction, which favors small wrinkle amplitude. Employing the classical “Winkler foundation” model of elasticity theory, we show that the number of radial wrinkles conveys a valuable relationship between the bending rigidity of the top membrane and the strength of the vdW interaction. Armed with this relationship, we use our data to demonstrate a nontrivial dependence of the bending rigidity on the number of layers in the top membrane, which shows two different regimes driven by slippage between the layers, and a high sensitivity of the vdW force to the alignment between the substrate and the membrane.


Author(s):  
Thomas K. Ogorzalek

This theoretical chapter develops the argument that the conditions of cities—large, densely populated, heterogeneous communities—generate distinctive governance demands supporting (1) market interventions and (2) group pluralism. Together, these positions constitute the two dimensions of progressive liberalism. Because of the nature of federalism, such policies are often best pursued at higher levels of government, which means that cities must present a united front in support of city-friendly politics. Such unity is far from assured on the national level, however, because of deep divisions between and within cities that undermine cohesive representation. Strategies for success are enhanced by local institutions of horizontal integration developed to address the governance demands of urbanicity, the effects of which are felt both locally and nationally in the development of cohesive city delegations and a unified urban political order capable of contending with other interests and geographical constituencies in national politics.


2021 ◽  
Vol 182 (3) ◽  
Author(s):  
Gernot Münster ◽  
Manuel Cañizares Guerrero

AbstractRoughening of interfaces implies the divergence of the interface width w with the system size L. For two-dimensional systems the divergence of $$w^2$$ w 2 is linear in L. In the framework of a detailed capillary wave approximation and of statistical field theory we derive an expression for the asymptotic behaviour of $$w^2$$ w 2 , which differs from results in the literature. It is confirmed by Monte Carlo simulations.


2020 ◽  
Vol 146 ◽  
pp. 03004
Author(s):  
Douglas Ruth

The most influential parameter on the behavior of two-component flow in porous media is “wettability”. When wettability is being characterized, the most frequently used parameter is the “contact angle”. When a fluid-drop is placed on a solid surface, in the presence of a second, surrounding fluid, the fluid-fluid surface contacts the solid-surface at an angle that is typically measured through the fluid-drop. If this angle is less than 90°, the fluid in the drop is said to “wet” the surface. If this angle is greater than 90°, the surrounding fluid is said to “wet” the surface. This definition is universally accepted and appears to be scientifically justifiable, at least for a static situation where the solid surface is horizontal. Recently, this concept has been extended to characterize wettability in non-static situations using high-resolution, two-dimensional digital images of multi-component systems. Using simple thought experiments and published experimental results, many of them decades old, it will be demonstrated that contact angles are not primary parameters – their values depend on many other parameters. Using these arguments, it will be demonstrated that contact angles are not the cause of wettability behavior but the effect of wettability behavior and other parameters. The result of this is that the contact angle cannot be used as a primary indicator of wettability except in very restricted situations. Furthermore, it will be demonstrated that even for the simple case of a capillary interface in a vertical tube, attempting to use simply a two-dimensional image to determine the contact angle can result in a wide range of measured values. This observation is consistent with some published experimental results. It follows that contact angles measured in two-dimensions cannot be trusted to provide accurate values and these values should not be used to characterize the wettability of the system.


2016 ◽  
Vol 24 (3) ◽  
Author(s):  
Oleg Y. Imanuvilov ◽  
Masahiro Yamamoto

AbstractWe prove the global uniqueness in determination of the conductivity, the permeability and the permittivity of the two-dimensional Maxwell equations by the partial Dirichlet-to-Neumann map limited to an arbitrary subboundary.


Author(s):  
Shan Jiang ◽  
Xingji Wang

A mechanics-based model of flexible needle insertion into soft tissue is presented in this paper. Different from the existing kinematic model, a new model has been established based on the quasi-static principle, which also incorporates the dynamics of needle motions. In order to increase the accuracy of the model, nonlinear characteristics of the flexible needle and the soft tissue are both taken into account. The nonlinear Winkler foundation model and the modified Euler–Bernoulli theory are applied in this study, providing a theoretical framework to study insertion and deformation of needles. Galerkin method and iteration cycle analysis are applied in solving a series of deformation control equations to obtain the needle deflection. The parameters used in the mechanics-based model are obtained from the needle force and needle insertion experiment. Sensitivity studies show that the model can respond reasonably to changes in response to variations in different parameters. A 50 mm needle insertion simulation and a 50 mm corresponding needle insertion experiment are conducted to prove the validity of the model. At last, a study on different needle tip bevel demonstrates that the mechanics-based model can precisely predict the needle deflection when more than one parameter is changed. The solution can also be used in optimizing trajectory of the needle tip, enabling the needle to reach the target without touching important physiological structures such as blood vessels with the help of dynamic trajectory planning.


Author(s):  
James Flinders ◽  
John D. Clemens

ABSTRACT:Most natural systems display non-linear dynamic behaviour. This should be true for magma mingling and mixing processes, which may be chaotic. The equations that most nearly represent how a chaotic natural system behaves are insoluble, so modelling involves linearisation. The difference between the solution of the linearised and ‘true’ equation is assumed to be small because the discarded terms are assumed to be unimportant. This may be very misleading because the importance of such terms is both unknown and unknowable. Linearised equations are generally poor descriptors of nature and are incapable of either predicting or retrodicting the evolution of most natural systems. Viewed in two dimensions, the mixing of two or more visually contrasting fluids produces patterns by folding and stretching. This increases the interfacial area and reduces striation thickness. This provides visual analogues of the deterministic chaos within a dynamic magma system, in which an enclave magma is mingling and mixing with a host magma. Here, two initially adjacent enclave blobs may be driven arbitrarily and exponentially far apart, while undergoing independent (and possibly dissimilar) changes in their composition. Examples are given of the wildly different morphologies, chemical characteristics and Nd isotope systematics of microgranitoid enclaves within individual felsic magmas, and it is concluded that these contrasts represent different stages in the temporal evolution of a complex magma system driven by nonlinear dynamics. If this is true, there are major implications for the interpretation of the parts played by enclaves in the genesis and evolution of granitoid magmas.


Sign in / Sign up

Export Citation Format

Share Document