A comprehensive engineering model for the design, manufacture and assembly of helical carpenter shapers

Author(s):  
W-F Chen ◽  
H-Y Lai

Currently, straight cutting-edge carpenter shapers are widely used in the production process. The manner of contact between this traditional type of shaper and the workpiece is a piecewise continuous curve. One drawback of shapers of this type is that the noise generated during the cutting process tends to be very loud. In order to overcome this problem, the current paper takes the thickness of the cutter into account and employs the concept of equidistant lines and surfaces to develop a new carpenter shaper that comprises a helical cutting edge on a cylindrical shank surface. The geometric shape of the blade surface that is mounted in the groove of the cutter shank is first derived. The contact curve of the proposed carpenter shaper with the workpiece is shown to be continuous. In order to establish a geometric model that facilitates the simple production of a carpenter helical shaping cutter, this paper presents a new design approach, which constructs an equidistant and equivalent involute helical surface model and a corresponding planar unwinding torus model. The carpenter shaper thus obtained is proven to be successful in reducing the noise levels of the cutting process. The contact style of the shaper also offers the additional advantages of higher cutting efficiency, lower energy consumption and longer tool-life. A numerical example is presented to illustrate the effectiveness of the proposed modelling approach. The results indicate that the proposed carpenter helical shaping (CHS) cutter model is accurate, efficient and comprehensive. The model is sufficiently accurate that it can be used as a guideline for the design, manufacture and assembly of robust, reliable and silent wooden shapers.

1999 ◽  
Author(s):  
Armen L. Airikyan

Abstract Everyday practice of cutting process planning requires reliable chipbreacking and this is particularly true when machining difficult-ti-machine materials as austenitic stainless steels. The use of pressed-groove type of chipbreakers prove to provide a partly solution of the problem since their utilization unavoidably leads to increasing cutting force and chipping of the cutting edge. The use of clapped-on chipbreaker seems to solve these problems. However new design and application problem arise. This paper deals with the analysis of these problema and offers a methodology for it resolving. As a result, a new type of a clamped-on chipbreaker has been developed.


Author(s):  
Ján Kováč ◽  
Milan Mikleš

Nowadays, the wood cutting process looks like a technological scheme consisting of several connected and relatively inseparable parts. The crosscutting wood is the most widespread in the process of fo­rest exploitation; it is used at tree exploitation, shortening stems and assortment production. The article deals with the influence of the cutting edge geometry of circular saws on the torque and also on the cutting performance at the crosscutting wood therefore there is the influence on the whole cutting process. In the article there is described detailed measurement procedure, used measuring devices and the process of results analysis. Knowledge of wood crosscutting process and choice of suitable cutting conditions and cutting tools will contribute to decrease production costs and energy saving.


2007 ◽  
Vol 72 (2) ◽  
pp. 334-348 ◽  
Author(s):  
Mary M. Prasciunas

Many researchers assume that the greater flake tool production efficiency of bifacial versus amorphous cores helps explain the prevalence of bifacial core technology among mobile populations. This paper describes experiments that test whether bifacial cores are more efficient carriers of flake cutting edge than amorphous cores. The first experiment established a size threshold of flake cutting efficiency. The second experiment reduced ten bifacial and ten amorphous cores to exhaustion and calculated the amount of usable and total flake edge produced by each core type, excluding flakes beneath the size threshold. Results indicate that bifacial cores are not significantly more efficient producers of usable or total flake edge than amorphous cores. Bifaces do produce flakes with significantly higher edge-to-weight ratios than do amorphous cores, but more of the weight of bifacial cores is lost to waste during the flake production process. Flake production efficiency therefore does not explain the use of bifacial cores among mobile populations.


2015 ◽  
Vol 808 ◽  
pp. 40-47 ◽  
Author(s):  
Raluca Daicu ◽  
Gheorghe Oancea

Processing metallic materials by cutting using good electricity conductor cutting edges it appears an electrical current due mainly to the temperature in the cutting zone. Analyzing of the electrical current the information about the unfolding mode of the cutting process can be obtained. The cutting electrical current can be used in several applications: the estimation of the temperature in the cutting zone, the estimation of the cutting forces, the identification of the wear state of the cutting edge etc. The first researches were started in Russia and they were based on the utilization of the cutting electrical current to measure the temperature in the cutting zone. Afterwards, other applications were identified in the literature and the researches were extended in other countries like India, Japan, USA, Brazil, France, Bangladesh and Romania. This paper presents a review of the researches about the electrical current which appears at cutting process.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Adam R. Updegrove ◽  
Shawn C. Shadden ◽  
Nathan M. Wilson

Image-based modeling is an active and growing area of biomedical research that utilizes medical imaging to create patient-specific simulations of physiological function. Under this paradigm, anatomical structures are segmented from a volumetric image, creating a geometric model that serves as a computational domain for physics-based modeling. A common application is the segmentation of cardiovascular structures to numerically model blood flow or tissue mechanics. The segmentation of medical image data typically results in a discrete boundary representation (surface mesh) of the segmented structure. However, it is often desirable to have an analytic representation of the model, which facilitates systematic manipulation. For example, the model then becomes easier to union with a medical device, or the geometry can be virtually altered to test or optimize a surgery. Furthermore, to employ increasingly popular isogeometric analysis (IGA) methods, the parameterization must be analysis suitable. Converting a discrete surface model to an analysis-suitable model remains a challenge, especially for complex branched structures commonly encountered in cardiovascular modeling. To address this challenge, we present a framework to convert discrete surface models of vascular geometries derived from medical image data into analysis-suitable nonuniform rational B-splines (NURBS) representation. This is achieved by decomposing the vascular geometry into a polycube structure that can be used to form a globally valid parameterization. We provide several practical examples and demonstrate the accuracy of the methods by quantifying the fidelity of the parameterization with respect to the input geometry.


Author(s):  
Fabio Ciampoli ◽  
John W. Chew ◽  
Shahrokh Shahpar ◽  
Elisabeth Willocq

The objective of the research described here is to develop and demonstrate use of automatic design methods for pre-swirl nozzles. Performance of pre-swirled cooling air delivery systems depends critically on the design of these nozzles which is subject to manufacturing and stress constraints. The best solution may be a compromise between cost and performance. Here it is shown that automatic optimisation using computational fluid dynamics (CFD) to evaluate nozzle performance can be useful in design. A parametric geometric model of a nozzle with appropriate constraints is first defined and the CFD meshing and solution are then automated. The mesh generation is found to be the most delicate task in the whole process. Direct hill climbing (DHC) and response surface model (RSM) optimisation methods have been evaluated. For the test case considered, significant nozzle performance improvements were obtained using both methods, but the RSM model was preferred.


Sign in / Sign up

Export Citation Format

Share Document