Numerical and experimental study of the heat transfer process in friction stir welding

Author(s):  
M Song ◽  
R Kovacevic

A mathematical model to describe the detailed three-dimensional transient heat transfer process in friction stir welding (FSW) is presented. This work is both theoretical and experimental. An explicit central differential scheme is used in solving the control equations, the heat transfer phenomena during the tool penetrating, the welding and the tool-removing periods that are studied dynamically. The heat input from the tool shoulder is modelled as a frictional heat and the heat from the tool pin is modelled as a uniform volumetric heat generated by the plastic deformation near the pin. The temperature variation during the welding is also measured to validate the calculated results. The calculated results are in good agreement with the experimental data.

2017 ◽  
Vol 24 (3) ◽  
pp. 439-446
Author(s):  
Zhang Peilei ◽  
Yan Hua ◽  
Li Chonggui ◽  
Yu Zhishui ◽  
Lu Qinghua

AbstractA three-dimensional heat transfer model for friction stir welding is presented in this paper. A moving coordinate was introduced to reduce the difficulty of modeling the moving tool. Heat input from the tool shoulder and the tool pin were considered in the model. The plastic deformation heat was introduced into the model, too. It is clear that the heat production increased owing to plastic deformation, and this process depends on the stress level. Temperature measurement experiments were done to validate the calculated results. The calculated results were in good agreement with the experimental results. Preheating the workpiece is beneficial to obtain a good weld seam.


2012 ◽  
Vol 445 ◽  
pp. 789-794 ◽  
Author(s):  
Vahid Moosabeiki ◽  
Ghasem Azimi ◽  
Mostafa Ghayoor

Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. Friction stir tool plays a major role in friction stir welding process. In this investigation, it is tried to evaluate the effect of tool pin thread and tool shoulder curvature on FSW zone formation in AA6061 aluminium alloy. In this regard, six different tool pin geometries (threadless triangular pin with/without conical shoulder, threaded triangular pin with conical shoulder, threadless square pin with/without conical shoulder, threaded square pin with conical shoulder) are used to fabricate the joints. The formation of FSP zones are analyzed macroscopically. Tensile properties of the joints are evaluated and correlated with the FSP zone formation. Consequently, it is obtained that welding creates a higher quality compared to other tool pin profiles using the square tool with curved shoulder and having threaded pin.


2016 ◽  
Vol 20 (5) ◽  
pp. 1693-1701
Author(s):  
Alin Murariu ◽  
Darko Veljic ◽  
Dragana Barjaktarevic ◽  
Marko Rakin ◽  
Nenad Radovic ◽  
...  

The heat generated during friction stir welding (FSW) process depends on plastic deformation of the material and friction between the tool and the material. In this work, heat generation is analysed with respect to the material velocity around the tool in Al alloy Al2024-T351 plate. The slip rate of the tool relative to the workpiece material is related to the frictional heat generated. The material velocity, on the other hand, is related to the heat generated by plastic deformation. During the welding process, the slippage is the most pronounced on the front part of the tool shoulder. Also, it is higher on the retreating side than on the advancing side. Slip rate in the zone around the tool pin has very low values, almost negligible. In this zone, the heat generation from friction is very low, because the material is in paste-like state and subjected to intensive plastic deformation. The material flow velocity around the pin is higher in the zone around the root of the pin. In the radial direction, this quantity increases from the pin to the periphery of the tool shoulder.


Author(s):  
S.T. Selvamani ◽  
M. Vigneshwar ◽  
S. Divagar

In this research work, the effects of heat transfer on microhardness, microstructures of friction stir welded AA 6061-T6 Aluminum alloy butt joints advancing side and retreating side are analyzed. A three dimensional finite element model is developed to study the thermal history in the butt welding of AA 6061 aluminum alloy using ANSYS package. Solid 70 elements are used to develop the model and a moving co-ordinate has been introduced to model the three-dimensional heat transfer process because it reduces the difficulty of modeling the moving tool. In this model, the main parameter considered is the heat input from the tool shoulder and tool pin. As a result, the temperature distributions of the weld at a welding speed of 1.25mm/sec were obtained.


2007 ◽  
Vol 550 ◽  
pp. 479-484 ◽  
Author(s):  
Jae Hyung Cho ◽  
Donald E. Boyce ◽  
Paul R. Dawson

Texture evolution during friction stir welding of stainless steel was investigated using both predictions by crystal plasticity and EBSD measurements. Two- and three-dimensional Eulerian formulations are used to model friction stir welding. Plane strain deformation is assumed in a two-dimensional model, and an initial uniform texture changes into a torsion texture with monoclinic sample symmetry after deformation. Around the tool pin, the texture strengthens, weakens and restrengthens repeatedly. It is found from a simple circular streamline model that the relative magnitudes of the deformation rate and spin along the streamlines decide textural stability. In order to consider more complicated material behaviors, such as movement along the thickness direction due to a threaded tool pin and a tool shoulder, a three-dimensional Eulerian formulation is also implemented. Materials starting under the tool shoulder travel down to the bottom, producing the longest material streamlines. Those material points are predicted to have stronger texture components than others. EBSD results are compared with the predictions.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2011 ◽  
Vol 228-229 ◽  
pp. 676-680 ◽  
Author(s):  
Ye Tian ◽  
Xun Liang Liu ◽  
Zhi Wen

A three-dimensional mathematic model is developed for a 100kw single-end recuperative radiant tube and the simulation is performed with the CFD software FLUENT. Also it is used to investigate the effect of distance between combustion chamber exit and inner tube on heat transfer process. The results suggest that the peak value of combustion flame temperature drops along with the increasing of distance, which leads to low NOX discharging. Also radiant tube surface bulk temperature decreases, which causes radiant tube heating performance losses.


2016 ◽  
Vol 20 (1) ◽  
pp. 247-254
Author(s):  
Darko Veljic ◽  
Bojan Medjo ◽  
Marko Rakin ◽  
Zoran Radosavljevic ◽  
Nikola Bajic

Temperature, plastic strain and heat generation during the plunge stage of the friction stir welding (FSW) of high-strength aluminium alloys 2024 T3 and 2024 T351 are considered in this work. The plunging of the tool into the material is done at different rotating speeds. A three-dimensional finite element (FE) model for thermomechanical simulation is developed. It is based on arbitrary Lagrangian-Eulerian formulation, and Johnson-Cook material law is used for modelling of material behaviour. From comparison of the numerical results for alloys 2024 T3 and 2024 T351, it can be seen that the former has more intensive heat generation from the plastic deformation, due to its higher strength. Friction heat generation is only slightly different for the two alloys. Therefore, temperatures in the working plate are higher in the alloy 2024 T3 for the same parameters of the plunge stage. Equivalent plastic strain is higher for 2024 T351 alloy, and the highest values are determined under the tool shoulder and around the tool pin. For the alloy 2024 T3, equivalent plastic strain is the highest in the influence zone of the tool pin.


Sign in / Sign up

Export Citation Format

Share Document