Characterization of machining of AISI 1045 steel over a wide range of cutting speeds. Part 2: Evaluation of flow stress models and interface friction distribution schemes

Author(s):  
S A Iqbal ◽  
P T Mativenga ◽  
M A Sheikh
Procedia CIRP ◽  
2018 ◽  
Vol 68 ◽  
pp. 196-199 ◽  
Author(s):  
Yulei Fu ◽  
Jing Hu ◽  
Weijie Huo ◽  
Xiaotong Cao ◽  
Ruixue Zhang ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 782
Author(s):  
Mohanraj Murugesan ◽  
Muhammad Sajjad ◽  
Dong Won Jung

In the field of engineering, automobile and aerospace components are manufactured based on the desired applications from the metal forming process. For producing better quality of both symmetry and asymmetry mechanical parts, understanding the material deformation and analytical representation of the material ductility behavior for the working material is necessary as the forming procedures carried out mostly in the warm processing conditions. In this work, the hot tensile test flow stress-strain data were utilized to construct the constitutive equation for describing AISI-1045 steel material hot deformation behavior, and the test conditions, such as deformation temperatures and strain rates were 750–950 ° C and 0.05–1.0 s − 1 , respectively. The surface morphology and elemental identification analysis were performed using the field emission scanning electron microscopy (FESEM) coupled with the energy-dispersive X-ray spectroscopy (EDS) mapping setup. In this work, the Arrhenius-type constitutive equation, including the strain compensation, was used to formulate the flow stress prediction model for capturing the material behavior. Besides, the Zener-Hollomon parameter was altered, employing incorporating the effect of strain rate and strain on the flow stress. The empirical model approach was employed to estimate the material model constants from the constitutive equation using the actual test measurements. The population metrics such as coefficient of determination ( R 2 ), sample standard deviation of the error (SSD), standard error of the regression (SER), coefficient of residual variation (CRV), and average absolute relative error (AARE) was employed to confirm the predictability of the proposed models. The computed results are discussed in detail, using numerical and graphical verification’s. From the graphical comparison, the flow stress-strain data achieved from the proposed constitutive model are in good agreement with the actual test measurements. The constitutive model prediction accuracy is found to be improved, like the prediction error range from 3.678% to 2.984%. This evidence proves to be feasible as the newly developed model displayed a significant improvement against the experimental observations.


2011 ◽  
Vol 308-310 ◽  
pp. 1134-1138 ◽  
Author(s):  
Su Yu Wang ◽  
Wen Chao Wang ◽  
Tao Yu ◽  
Bin Jiang

Surface roughness is an important parameter to evaluate the quality of high-speed machining (HSM). This paper establishes a mechanical model based on the molecular-mechanical theory of friction to study factors that influence the surface roughness in HSM. The relationship between flow stress and the remnant height on the machined surface is obtained. The HSM process of AISI-1045 steel is simulated by using finite element method (FEM) based on DEFORM-2D and the flow stress is obtained. The surface roughness of workpiece machined by HSM is calculated based on the value of flow stress and the mechanical model. The result shows that the surface roughness of workpiece in HSM is acceptable, and the mechanical model supplies a method to study the surface roughness in HSM.


2013 ◽  
Vol 307 ◽  
pp. 174-177 ◽  
Author(s):  
Kuldip Singh Sangwan ◽  
Girish Kant ◽  
Aditya Deshpande ◽  
Pankaj Sharma

This paper focuses on finite element modeling of orthogonal cutting process of AISI 1045 steel using Modified Johnson Cook (MJC) as constitutive material flow model under various machining parameters. Finite element solutions of cutting forces, effective stresses and temperature are obtained for a wide range of cutting speeds and feeds. The effect of feed and cutting speed on cutting forces, effective stresses and temperature has been studied over a wide range of values. Percentage variation of each is also studied to predict co-relation with the different machining parameters.


2011 ◽  
Vol 486 ◽  
pp. 262-265
Author(s):  
Amit Kohli ◽  
Mudit Sood ◽  
Anhad Singh Chawla

The objective of the present work is to simulate surface roughness in Computer Numerical Controlled (CNC) machine by Fuzzy Modeling of AISI 1045 Steel. To develop the fuzzy model; cutting depth, feed rate and speed are taken as input process parameters. The predicted results are compared with reliable set of experimental data for the validation of fuzzy model. Based upon reliable set of experimental data by Response Surface Methodology twenty fuzzy controlled rules using triangular membership function are constructed. By intelligent model based design and control of CNC process parameters, we can enhance the product quality, decrease the product cost and maintain the competitive position of steel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eduardo da Rosa Vieira ◽  
Luciano Volcanoglo Biehl ◽  
Jorge Luis Braz Medeiros ◽  
Vagner Machado Costa ◽  
Rodrigo Jorge Macedo

AbstractQuench hardening aims at the microstructural transformation of steels in order to improve hardness and mechanical strength. The aim phase is, in most cases, the martensite. It is necessary to heat the material until it obtains its austenitization and quenching by immersion in a fluid. Currently, it is common to use watery polymeric solutions in this procedure. These fluids, which are the mixture of polymers in water, vary their thermal exchange capacity depending on the concentrations applied. The increase in concentration minimizes the removal of heat from the part, reducing the formation capacity of martensite, and developing a lower hardness and strong steel. In this work, microstructural characteristics and properties of AISI 1045 steel quenched in solutions based on polyvinylpyrrolidone (PVP) in 10, 15, 20, and 25% concentration were evaluated. The microstructural characterization quantified the percentage of the phases in each concentration, demonstrating a reduction of martensite as the concentrations were high. The investigation of the samples by x-ray diffraction confirmed the absence of austenite retained in the material. Furthermore, a microhardness scale between the core and the surface was constructed, in which a reduction gradient of the indices of this property towards the core of the sample was evidenced.


Sign in / Sign up

Export Citation Format

Share Document