Crease Stiffness and Panel Compliance of Carton Folds and Their Integration in Modelling

Author(s):  
F Cannella ◽  
J S Dai

This paper investigates the stiffness characteristics of creases and panels of a carton, and their integrated effect on the carton during folding and manipulation in packaging, reveals the resistive moment resulting from carton creases and identifies the force required for folding cartons. The study starts from the residual moment of carton creases and its effects on carton panels when erecting a carton section. By characterizing stiffness of both creases and panels, an analytical model is developed and compared with numerical results from finite-element analysis. The study then extends to a whole carton with a crush-lock closure base. By modelling the base as a four-bar mechanism with guiding linkages, a kinematic model of the carton is established and the residual moment and forces are obtained. The paper further reveals the carton elasticity property and the non-linearity deformation that contributes to modelling in a case study.

2004 ◽  
Vol 127 (3) ◽  
pp. 506-510 ◽  
Author(s):  
Ouqi Zhang

It is known that the behavior of real axisymmetric bolted joints in tension is much more complicated than that the conventional theory describes. Phenomenon conflicting with the theory prediction was observed in experimental and finite element analysis [Kwiatkowski, J. K., Winnicki, L. A., and Krzyspiak, A., 1986, “Stress Analysis of Bolted Tensile End Plate Connections,” Rozprawy Inzynierskie Eng. Trans., 34, pp. 113–137; Webjörn, J., 1988, “Die Moderne Schraubenverbindung,” VDI-Z, 130, pp. 76–78; Grosse, I. R., and Mitchell, L. D., 1990, “Nonlinear Axial Stiffness Characteristics of Bolted Joints,” ASME J. Mech. Des., 122, pp. 442–449; Gerbert, G., Bastedt, H., 1993, “Centrically Loaded Bolt Joints,” ASME J. Mech. Des., 115, pp. 701–705]. Recently, a new analytical model of bolted joints was presented [Zhang, O., and Poirier, J. A., 2004, “New Analytical Model for Axisymmetric Bolted Joints,” ASME J. Mech. Des., 126, pp. 721–728], based on which some discussions are further made in this note.


2011 ◽  
Vol 1297 ◽  
Author(s):  
Karim R. Gadelrab ◽  
Matteo Chiesa

ABSTRACTNanoindentation results are very sensitive to tip rounding and neglecting the value of the tip radius produces erroneous estimation of the material elastic properties. In this study we investigate the effect of tip radius on the estimation of the Elastic modulus by means of finite element analysis of Berkovich and conical tips with different tip radii. Our numerical results were already supported by an experimental study on fused silica with Berkovich tips with different tip radii. The use of classical Oliver Pharr equation overestimated the Elastic modulus. A new analytical model that modifies the Oliver Pharr equation to consider the value of the tip radius is employed to derive the Elastic modulus from load displacement curves yielding improved results compared to the classical Oliver Pharr equation.


2014 ◽  
Vol 580-583 ◽  
pp. 2134-2140
Author(s):  
Jian Zhang ◽  
Jian Feng Zhai ◽  
Xian Mei Wang ◽  
Jie Chen

Two-Dimensional finite element analysis was used to investigate the performance of seawall construction over weak subgrade soil using artificial base layer material consisted of cemented sand cushion comprising geosynthetics materials. Two types of base layer materials pure sand and cemented sand comprising husk rich ash and two types of geosynthetics materials geogrid and geotextile were used. Constitutive models were used to represent different materials in numerical analysis. The competence of two-dimensional numerical analysis was compared with experimental results. Numerical results showed a superior harmony with the experimental results. Finite element analysis model proved to be a great tool to determine the parameters that are difficult to measure in laboratory experiments. In addition, finite element analysis has the benefit of cost and time saving when compared to experimental investigation work. Numerical results showed strain induced in geosynthetics eliminated beyond a distance approximately equal six times of footing width.


Author(s):  
Nand K. Jha ◽  
Mahmoud M. Amin

An attempt has been made to design and analyze Indexing Head a very important component in milling operation under sustainability considerations. The design of each component of indexing head is presented along with solid modeling and finite element analysis. The cost estimation for indexing head for milling operation is also presented. The design and finite element analysis of indexing head should be utilized by manufacturers of this very useful device in milling operation. It is used for cutting gears, spirals, splines, etc. The cost estimated of the manufactured indexing head shows it to be within reasonable limits of market. Finite element analysis of each component is safe. An electronic indexing is suggested as an improvement over the mechanical indexing head. A schematic of electronic indexing is presented. The electronic indexing head can be used with milling machine not provided with indexing head and will be portable. The minimum energy needed to manufacture the indexing head is also estimated.


Author(s):  
Alex Berry ◽  
Warren Brown ◽  
Antonio Seijas ◽  
Sarah Cook

Abstract Coke drums are subjected to severe thermal cycling with the skirt to shell connection weld being vulnerable to fatigue cracking. It is essential this connection is well designed to ensure a long life before repairs are inevitably required. Much has been written on coke drum skirt design with the aim of reducing the thermal stresses and strains encountered at the skirt connection weld, some designs have removed the weld completely allowing the drum to sit in an “egg-in-cup” arrangement. This paper includes a short literature review discussing Coke drum skirt designs and explains skirt behaviour during the drum cycle that results in eventual skirt cracking. A case study is reviewed in detail for a new pair of coke drums, where the predicted fatigue life of the chosen welded connection is assessed using axisymmetric, quarter symmetry and half symmetry finite element analysis supported by thermocouple data. The optimised design focuses on a conventional tangential design where the effects of the essential variables such as skirt thickness, skirt connection location, skirt-to head-gap and slot design (length, location & spacing) have been modelled and optimised to obtain a skirt design that produces the longest fatigue life for the intended duty cycle. Coke drum skirts must be installed onto the shell to exacting tolerances during manufacture to ensure concentricity and minimal gap between the skirt and shell. A brief overview of how this is achieved will be presented.


2020 ◽  
Vol 8 (5) ◽  
pp. 358 ◽  
Author(s):  
Yusak Oktavianus ◽  
Massoud Sofi ◽  
Elisa Lumantarna ◽  
Gideon Kusuma ◽  
Colin Duffield

A precast reinforced concrete (RC) T-beam located in seaport Terminal Peti Kemas (TPS) Surabaya built in 1984 is used as a case study to test the accuracy of non-destructive test techniques against more traditional bridge evaluation tools. This bridge is mainly used to connect the berth in Lamong gulf and the port in Java Island for the logistic purposes. The bridge was retrofitted 26 years into its life by adding two strips of carbon fiber reinforced polymer (CFRP) due to excessive cracks observed in the beams. Non-destructive field measurements were compared against a detailed finite element analysis of the structure to predict the performance of the girder in terms of deflection and moment capacity before and after the retrofitting work. The analysis was also used to predict the long-term deflections of the structure due to creep, crack distribution, and the ultimate moment capacity of the individual girder. Moreover, the finite element analysis was used to predict the deflection behavior of the overall bridge due to vehicle loading. Good agreement was obtained between the field measurement and the analytical study. A new service life of the structure considering the corrosion and new vehicle demand is carried out based on field measurement using non-destructive testing. Not only are the specific results beneficial for the Indonesian port authority as the stakeholder to manage this structure, but the approach detailed also paves the way for more efficient evaluation of bridges more generally over their service life.


Sign in / Sign up

Export Citation Format

Share Document